回帰モデル応用(第2版)<br>Applied Regression Modeling (2ND)

個数:

回帰モデル応用(第2版)
Applied Regression Modeling (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 325 p.
  • 言語 ENG
  • 商品コード 9781118097281
  • DDC分類 519.536

基本説明

New to this edition are more exercises, updated examples, clarification and expansion of challenging topics.

Full Description

Praise for the First Edition "The attention to detail is impressive. The book is very well written and the author is extremely careful with his descriptions ...the examples are wonderful." The American Statistician Fully revised to reflect the latest methodologies and emerging applications, Applied Regression Modeling, Second Edition continues to highlight the benefits of statistical methods, specifically regression analysis and modeling, for understanding, analyzing, and interpreting multivariate data in business, science, and social science applications. The author utilizes a bounty of real-life examples, case studies, illustrations, and graphics to introduce readers to the world of regression analysis using various software packages, including R, SPSS, Minitab, SAS, JMP, and S-PLUS. In a clear and careful writing style, the book introduces modeling extensions that illustrate more advanced regression techniques, including logistic regression, Poisson regression, discrete choice models, multilevel models, and Bayesian modeling.
In addition, the Second Edition features clarification and expansion of challenging topics, such as: * Transformations, indicator variables, and interaction * Testing model assumptions * Nonconstant variance * Autocorrelation * Variable selection methods * Model building and graphical interpretation Throughout the book, datasets and examples have been updated and additional problems are included at the end of each chapter, allowing readers to test their comprehension of the presented material. In addition, a related website features the book's datasets, presentation slides, detailed statistical software instructions, and learning resources including additional problems and instructional videos. With an intuitive approach that is not heavy on mathematical detail, Applied Regression Modeling, Second Edition is an excellent book for courses on statistical regression analysis at the upper-undergraduate and graduate level. The book also serves as a valuable resource for professionals and researchers who utilize statistical methods for decision-making in their everyday work.

Contents

Preface xi Acknowledgments xvii Introduction xvii 1.1 Statistics in practice xvii 1.2 Learning statistics xix 1. Foundations 1 1.1 Identifying and summarizing data 1 1.2 Population distributions 5 1.3 Selecting individuals at random probability 9 1.4 Random sampling 11 1.5 Interval estimation 15 1.6 Hypothesis testing 19 1.7 Random errors and prediction 25 1.8 Chapter summary 28 Problems 29 2. Simple linear regression 35 2.1 Probability model for X and Y 35 2.2 Least squares criterion 40 2.3 Model evaluation 45 2.4 Model assumptions 59 2.5 Model interpretation 66 2.6 Estimation and prediction 68 2.7 Chapter summary 72 Problems 78 3. Multiple linear regression 83 3.1 Probability model for (X1; X2; : : : ) and Y 83 3.2 Least squares criterion 87 3.3 Model evaluation 92 3.4 Model assumptions 118 3.5 Model interpretation 124 3.6 Estimation and prediction 126 3.7 Chapter summary 130 Problems 132 4. Regression model building I 137 4.1 Transformations 138 4.2 Interactions 159 4.3 Qualitative predictors 166 4.4 Chapter summary 182 Problems 184 5. Regression model building II 189 5.1 Influential points 189 5.2 Regression pitfalls 199 5.3 Model building guidelines 218 5.4 Model selection 221 5.5 Model interpretation using graphics 224 5.6 Chapter summary 231 Problems 234 6. Case studies 243 6.1 Home prices 243 6.2 Vehicle fuel efficiency 253 6.3 Pharmaceutical patches 261 7. Extensions 267 7.1 Generalized linear models 268 7.2 Discrete choice models 275 7.3 Multilevel models 278 7.4 Bayesian modeling 280 Appendix A. Computer software help 285 Appendix B. Critical values for t distributions 289 Appendix C. Notation and formulas 293 Appendix D. Mathematics refresher 297 Appendix E. Answers to selected problems 299 References 309 Glossary 315 Index 321

最近チェックした商品