Sobolev Spaces on Metric Measure Spaces : An Approach Based on Upper Gradients (New Mathematical Monographs)

個数:
電子版価格
¥15,710
  • 電子版あり
  • ポイントキャンペーン

Sobolev Spaces on Metric Measure Spaces : An Approach Based on Upper Gradients (New Mathematical Monographs)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 448 p.
  • 言語 ENG
  • 商品コード 9781107092341
  • DDC分類 515.7

Full Description

Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities.

Contents

Preface; 1. Introduction; 2. Review of basic functional analysis; 3. Lebesgue theory of Banach space-valued functions; 4. Lipschitz functions and embeddings; 5. Path integrals and modulus; 6. Upper gradients; 7. Sobolev spaces; 8. Poincaré inequalities; 9. Consequences of Poincaré inequalities; 10. Other definitions of Sobolev-type spaces; 11. Gromov-Hausdorff convergence and Poincaré inequalities; 12. Self-improvement of Poincaré inequalities; 13. An Introduction to Cheeger's differentiation theory; 14. Examples, applications and further research directions; References; Notation index; Subject index.

最近チェックした商品