Rによる空間データ分析<br>Spatial Data Analysis with R (Advanced Quantitative Techniques in the Social Sciences)

個数:
電子版価格
¥11,138
  • 電子版あり

Rによる空間データ分析
Spatial Data Analysis with R (Advanced Quantitative Techniques in the Social Sciences)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 416 p.
  • 言語 ENG
  • 商品コード 9781071862353
  • DDC分類 910.2855133

Full Description

This is an introduction for social science students to the growing field of spatial data analysis using the R platform. The text assumes no prior knowledge of either, beyond the contents of an introductory statistics course. It uses the open-source software R, and relevant spatial data analysis packages, to provide practical guidance of how to conduct spatial data analysis with readers' own data sets.

Contents

Preface
Acknowledgments
About the Author
Chapter 1. The Journey Starts With R
1.1 What Is R, and Why Should We Use R?
1.2 Getting and Familiarizing Yourselves With R
1.3 The Two Companions of R
1.4 Basic Operations in R
1.5 The R Packages
1.6 The R Task Views and Spatial Task View
Conclusion
Review Questions
Chapter 2. Very Basic Concepts of Statistical Data Analysis
2.1 The Concepts of Variable, Random Variable and Variable Distribution, and Degrees of Freedom
2.2 The Concept of Hypothesis Testing
2.3 Exploratory Data Analysis
2.4 Have a Taste of Regression Analysis
2.5 Practices in R
Review Questions
Chapter 3. Spatial Data is Special: Working With the Complexity of Spatial Data
3.1 Spatial/Geographical/Map Data—Recognize Them
3.2 Spatial Data is Special—Spatial Effects
3.3 Spatial Data Analysis
3.4 Spatial Effects' Impact on Data Analysis
3.5 Exploratory Spatial Data Analysis
3.6 Quantifying Spatial Autocorrelation—Essence of ESDA
3.7 Practice in R
Review Questions
Chapter 4. The Concept of Neighbor: Spatial Linkage Matrix and Spatial Weight
4.1 Second Contact: Spatial Autocorrelation
4.2 Spatial Neighbors—Are You My Neighbor?
4.3 Spatial Weight and Spatial Lag Revisit
4.4 Practice in R
Review Questions
Chapter 5. Global Spatial Autocorrelation
5.1 Third Contact: Spatial Autocorrelation: The Global and Local Versions
5.2 Introducing the Moran's Index (Coefficient)
5.3 Practice in R
Review Questions
Chapter 6. Local Spatial Autocorrelation
6.1 Global and Local: What Is Their Relationship
6.2 The Local Moran's Index
6.3 Global and Local Again: The Moran's Scatterplot
6.4 Practice in R
Review Questions
Chapter 7. Spatial Autoregressive Models
7.1 Regression With Spatial Data
7.2 Taxonomy of Spatial Autoregressive Models as Alternative
7.3 Practice in R
Review Questions
Chapter 8. Eigenfunction-Based Spatial Filtering Regression
8.1 Fourth Contact: Spatial Autocorrelation
8.2 Spatial Autocorrelation as Map Pattern
8.3 Augmented Regression With Spatial Filters as Synthetic Covariates
8.4 Practice in R
Review Questions
Chapter 9. Introduction to Local Models: Geographically Weighted Regression and Eigenfunction-Based Spatial Filtering Approach
9.1 Global and Local Regression
9.2 Geographically Weighted Regression (GWR)
9.3 Eigenfunction-Based Spatial Filtering Approach to Addressing Spatial Nonstationarity
9.4 Comparison Between GWR and ESF SVC Models
9.5 Practice in R
Review Questions
Chapter 10. Brief Introduction to Spatial Panel Regression and SVC Panel Regression
10.1 Panel Dataset and Panel Regression
10.2 Spatial Panel Models
10.3 Spatially Varying Coefficient Process With Panel Model
10.4 Practice in R
Review Questions
Chapter 11. Conclusion
11.1 Journey So Far
11.2 Future Learning Directions
Appendix: Answers to Review Questions
References
Index

最近チェックした商品