Synthesizing Materials in Microgravity : Unlocking Novel Materials Beyond Earth's Limits (Off-world Science & Engineering Series)

個数:

Synthesizing Materials in Microgravity : Unlocking Novel Materials Beyond Earth's Limits (Off-world Science & Engineering Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 200 p.
  • 言語 ENG
  • 商品コード 9781041106364
  • DDC分類 620.11

Full Description

Synthesizing Materials in Microgravity: Unlocking Novel Materials Beyond Earth's Limits reveals how space-based environments unlock breakthroughs in material design by eliminating Earth's gravitational constraints. On Earth, gravity induces convection, sedimentation, and pressure gradients that compromise material quality during crystallization, solidification, polymerization, and sintering. In microgravity, such as aboard the ISS, these forces are minimized, enabling precise control of atomic arrangements, phase transitions, and microstructure formation. The result: materials with superior structural, electrical, and thermal properties once thought unattainable.

This book presents cutting-edge experiments from space, bridging theoretical foundations with real-world case studies across alloys, ceramics, semiconductors, and polymers. With high-quality visuals, it demystifies complex phenomena and highlights future commercial and scientific frontiers. A vital resource for scientists, engineers, and innovators seeking new material horizons.

Contents

I. Introduction
• A. Background and Context
o The role of gravity in material synthesis on Earth
o Limitations posed by gravity in producing uniform and defect-free materials
• B. Significance of Microgravity Research
o Unique physical and chemical phenomena in microgravity
o Potential for novel material properties and structures
• C. Objective
o Explore the synthesis of organics, ceramics, alloys, and polymers in microgravity
o Highlight advancements, challenges, and future opportunities

II. Theoretical Basis of Material Synthesis in Microgravity
• A. Fundamental Effects of Microgravity on Material Behavior
o Reduced buoyancy-driven convection
o Absence of sedimentation
o Enhanced diffusion-dominated processes
• B. Thermodynamics and Kinetics in Zero Gravity
o Heat and mass transfer considerations
o Phase separation and crystallization behavior

III. Synthesis of Organic Materials in Microgravity
• A. Overview of Organic Material Synthesis
o Types of organic compounds synthesized in space
• B. Microgravity Effects on Organic Synthesis
o Uniform polymerization and crystallization
o Reduced defect formation
• C. Case Studies and Experiments
o Protein crystal growth in microgravity
o Organic semiconductor synthesis

IV. Synthesis of Ceramic Materials in Microgravity
• A. Challenges in Terrestrial Ceramic Synthesis
o Gravity-induced defects and phase separation
• B. Microgravity Techniques for Ceramic Fabrication
o Vapor deposition methods
o Controlled sintering processes
• C. Applications of Microgravity-Synthesized Ceramics
o High-performance optical materials
o Advanced thermal barrier coatings

V. Synthesis of Metallic Alloys in Microgravity
• A. Alloy Solidification Under Gravity vs. Microgravity
o Gravity-induced segregation and crystal defects
• B. Techniques for Alloy Synthesis in Microgravity
o Electromagnetic levitation
o Containerless processing
• C. Case Studies and Results
o Ti-Al and Ni-based superalloys
o Amorphous metal formation
• D. Applications of Space-Synthesized Alloys
o Aerospace components
o High-strength, lightweight materials

VI. Synthesis of Polymers in Microgravity
• A. Effects of Gravity on Polymerization Processes
o Density gradients and phase separation
• B. Microgravity-Enabled Polymerization Techniques
o Emulsion polymerization
o Controlled radical polymerization
• C. Unique Properties of Space-Synthesized Polymers
o Enhanced structural homogeneity
o Tailored thermal and mechanical properties
• D. Applications in Medicine, Aerospace, and Electronics
o Biomedical implants
o Conductive polymers for space electronics

VII. Experimental Facilities and Platforms for Microgravity Research
• A. International Space Station (ISS)
• B. Parabolic Flights and Drop Towers
• C. Space-Based Research Laboratories and Satellites
• D. Technological Challenges and Innovations

VIII. Challenges and Limitations in Space Material Synthesis
• A. Cost and Logistics of Space Missions
• B. Limited Experimental Time and Resources
• C. Scale-Up Challenges for Terrestrial Applications
• D. Safety and Environmental Concerns

IX. Future Prospects and Emerging Technologies
• A. Automation and AI in Space Manufacturing
• B. Additive Manufacturing and 3D Printing in Microgravity
• C. Long-Term Vision: Space-Based Factories
• D. Potential for Commercialization and Market Impact

X. Conclusion
• A. Summary of Key Findings
• B. Implications for Material Science and Engineering
• C. Final Thoughts on the Future of Space-Based Material Synthesis

XI. References
• Peer-reviewed articles, books, and reports on microgravity materials science

XII. Appendices
• Glossary of Key Terms
• Additional Data Tables or Diagrams

最近チェックした商品