AI and Machine Learning for Mechanical and Electrical Engineering (Innovations in Intelligent Internet of Everything Ioe)

個数:
  • 予約

AI and Machine Learning for Mechanical and Electrical Engineering (Innovations in Intelligent Internet of Everything Ioe)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 330 p.
  • 言語 ENG
  • 商品コード 9781032759487

Full Description

Practical and informative, AI and Machine Learning for Mechanical and Electrical Engineering examines how artificial intelligence (AI) is changing the status quo in mechanical engineering, electrical systems, and management. Real-world examples and case studies demonstrate the application of AI in such diverse settings as industry and policymaking. This book illustrates how AI is playing a crucial role in enhancing productivity and innovation in various industries. It discusses transition methods and the ethical implications of using AI in mechanical engineering. Chapter highlights include the following:

Developing a smart algorithm to integrate fault detection and classification
Algorithms to investigate different testing scenarios for various anomalies in electric motors
Data fusion to detect and assess electromechanical damage
Neural networks for rolling bearing fault diagnosis
Evolutionary algorithms to optimize deep learning models for water industry forecasts
AI-based anomaly detection and root-cause analysis

An overarching theme is the transition from traditional mechanical, electrical, and management systems to AI- enabled smart systems. The book helps readers make sense of the challenges of integrating smart systems. It equips engineers with theoretical understanding as well as insight based on hands- on expertise. It shows how to better link and automate systems and improve productivity. This book not only shows how to implement smart solutions now but also shows the way to a more intelligent, productive, and interconnected future.

Contents

1. Development of a Smart Algorithm to Integrate Fault Detection and Classification of End-to-End Monitoring of Autonomous Transfer Vehicles 2. Data Science and ML Algorithms to Investigate Different Testing Scenarios for Various Anomalies in Driven Electric Motor 3. A Data Fusion Technique to Detect and Assess Electromechanical Damage 4. AI: Classifications and Protection of Smart Grid Systems 5. An Artificial Intelligence-Based Solar Radiation Prophesy Model for Green Energy Utilization in Energy Management System 6. Two-Channel Convolutional Neural Networks for Rolling Bearing Fault Diagnosis in Unbalanced Datasets 7. The Implementation of Artificial Intelligence for Auto Gearbox Failure Detection 8. Evolutionary Algorithms to Optimise Deep Learning Models for Water Industry Forecasts 9. Artificial Intelligence Anomaly Detection and Root-Cause Analysis 10. Artificial Intelligence and Internet of Things-Based Intelligent Scheduling for Load Distribution in Power Grids 11. Coordinated Response Strategies: Swarm Robotics for Crisis Management 12. Smart Farming and Human-Bioinformatics Systems Based on IoT and Sensor Devices 13. Machine Learning Techniques Applied to Predictive Maintenance: A Review 14. Optimization of Parameters During Tribological Investigations on Azadirachta Indica Based Bio-Composites 15. ANFIS Modelling Study on Surface Water Analysis 16. WSN-Based Optimal Crude Oil Storage Health Monitoring Framework 17. Cybersecurity Education Gamification: A Current Review and Research Agenda 18. Artificial Intelligence and Cybersecurity in 6G Wireless Networks