Federated Deep Learning for Healthcare : A Practical Guide with Challenges and Opportunities (Advances in Smart Healthcare Technologies)

個数:

Federated Deep Learning for Healthcare : A Practical Guide with Challenges and Opportunities (Advances in Smart Healthcare Technologies)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 252 p.
  • 言語 ENG
  • 商品コード 9781032689555
  • DDC分類 610.285631

Full Description

This book provides a practical guide to federated deep learning for healthcare including fundamental concepts, framework, and the applications comprising domain adaptation, model distillation, and transfer learning. It covers concerns in model fairness, data bias, regulatory compliance, and ethical dilemmas. It investigates several privacy-preserving methods such as homomorphic encryption, secure multi-party computation, and differential privacy. It will enable readers to build and implement federated learning systems that safeguard private medical information.

Features:

Offers a thorough introduction of federated deep learning methods designed exclusively for medical applications.
Investigates privacy-preserving methods with emphasis on data security and privacy.
Discusses healthcare scaling and resource efficiency considerations.
Examines methods for sharing information among various healthcare organizations while retaining model performance.

This book is aimed at graduate students and researchers in federated learning, data science, AI/machine learning, and healthcare.

Contents

1. Revolutionizing Healthcare through Federated Learning: A Secure and Collaborative Approach. 2. Revolutionizing Healthcare: Unleashing the Power of Digital Health. 3. Federated Deep Learning Systems in Healthcare. 4. Applications of Federated Deep Learning Models in Healthcare Era. 5. Machine Learning for Healthcare- Review and future Aspects. 6. Federated Multi Task Learning to Solve Various Healthcare Challenges. 7. Smart System for Development of Cognitive Skills Using Machine Learning. 8. Patient-Driven Federated Learning (PD-FL) - An Overview. 9. An Explainable and Comprehensive Federated Deep Learning in Practical Applications: Real World Benefits and Systematic Analysis Across Diverse Domains. 10. Federated deep learning system for application of health care of pandemic situation. 11. The integration of federated deep learning with Internet of Things in the healthcare sector. 12. FireEye: An IoT-Based Fire Alarm and Detection System for Enhanced Safety. 13. Safeguarding Data Privacy and Security in Federated Learning Systems. 14. Computer Vision Based Fruit Diseases Detection System using Deep Learning. 15. Tailoring Medicine Through Personalized Healthcare Solutions. 16. FedHealth in Wearable Healthcare, Orchestrated Federated Deep Learning for Smart Healthcare: Health Monitoring and Healthcare Informatics Lensing Challenges and Future Directions. 17. From Scarce to Abundant: Enhancing Learning with Federated Transfer Techniques. 18. Federated Learning-Based AI Approaches for Predicting Stroke Disease.

最近チェックした商品