最初に読むデータサイエンス入門Python版<br>Data Science : A First Introduction with Python (Chapman & Hall/crc Data Science Series)

個数:

最初に読むデータサイエンス入門Python版
Data Science : A First Introduction with Python (Chapman & Hall/crc Data Science Series)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 432 p.
  • 言語 ENG
  • 商品コード 9781032572239
  • DDC分類 519.502855133

Full Description

Data Science: A First Introduction with Python focuses on using the Python programming language in Jupyter notebooks to perform data manipulation and cleaning, create effective visualizations, and extract insights from data using classification, regression, clustering, and inference. It emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the basics of version control. Based on educational research and active learning principles, the book uses a modern approach to Python and includes accompanying autograded Jupyter worksheets for interactive, self-directed learning. The text will leave readers well-prepared for data science projects. It is designed for learners from all disciplines with minimal prior knowledge of mathematics and programming. The authors have honed the material through years of experience teaching thousands of undergraduates at the University of British Columbia.

Key Features:

Includes autograded worksheets for interactive, self-directed learning.
Introduces readers to modern data analysis and workflow tools such as Jupyter notebooks and GitHub, and covers cutting-edge data analysis and manipulation Python libraries such as pandas, scikit-learn, and altair.
Is designed for a broad audience of learners from all backgrounds and disciplines.

Contents

Preface Foreword Acknowledgments 1. Python and Pandas 2. Reading in data locally and from the web 3. Cleaning and wrangling data 4. Effective data visualization 5. Classification I: training & predicting 6. Classification II: evaluation & tuning 7. Regression I: K-nearest neighbors 8. Regression II: linear regression 9. Clustering 10. Statistical inference 11. Combining code and text with Jupyter 12. Collaboration with version control 13. Setting up your computer Bibliography Index

最近チェックした商品