スマートヘルスケアのための深層学習<br>Deep Learning for Smart Healthcare : Trends, Challenges and Applications

個数:
  • ポイントキャンペーン

スマートヘルスケアのための深層学習
Deep Learning for Smart Healthcare : Trends, Challenges and Applications

  • ウェブストア価格 ¥47,280(本体¥42,982)
  • Auerbach(2024/05発売)
  • 外貨定価 US$ 230.00
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 2,145pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 280 p.
  • 言語 ENG
  • 商品コード 9781032455815
  • DDC分類 006.31

Full Description

Deep learning can provide more accurate results compared to machine learning. It uses layered algorithmic architecture to analyze data. It produces more accurate results since learning from previous results enhances its ability. The multi-layered nature of deep learning systems has the potential to classify subtle abnormalities in medical images, clustering patients with similar characteristics into risk-based cohorts, or highlighting relationships between symptoms and outcomes within vast quantities of unstructured data.

Exploring this potential, Deep Learning for Smart Healthcare: Trends, Challenges and Applications is a reference work for researchers and academicians who are seeking new ways to apply deep learning algorithms in healthcare, including medical imaging and healthcare data analytics. It covers how deep learning can analyze a patient's medical history efficiently to aid in recommending drugs and dosages. It discusses how deep learning can be applied to CT scans, MRI scans and ECGs to diagnose diseases. Other deep learning applications explored are extending the scope of patient record management, pain assessment, new drug design and managing the clinical trial process.

Bringing together a wide range of research domains, this book can help to develop breakthrough applications for improving healthcare management and patient outcomes.

Contents

Preface. List of Contributors. Chapter 1 Deep Learning in Healthcare and Clinical Studies. Chapter 2 Deep Learning Framework for Classification of Healthcare Data. Chapter 3 Leveraging Deep Learning in Hate Speech Analysis on Social Platform. Chapter 4 Medical Image Analysis Based on Deep Learning Approach for Early Diagnosis of Diseases. Chapter 5 A Study of Medical Image Analysis using Deep Learning Approaches. Chapter 6 Deep Learning for Designing Heuristic Methods for Healthcare Data Analytics. Chapter 7 Deep Learning-Based Smart Healthcare System for Patient's Discomfort Detection. Chapter 8 Gesture Identification for Hearing-Impaired through Deep Learning. Chapter 9 Deep Learning-Based Cloud Computing Technique for Patient Data Management. Chapter 10 Challenges and Issues in Health Care and Clinical Studies Using Deep Learning. Chapter 11 Protecting Medical Images Using Deep Learning Fuzzy Extractor Model. Chapter 12 Review of Various Deep Learning Techniques with a Case Study on Prognosticate Diagnostics of Liver Infection. Chapter 13 Case Study: Application of Ensemble Classifier for Diabetes Healthcare Data Analytics. Chapter 14 Deep Convolutional Neural Network Models for Early Detection of Breast Cancer from Digital Mammograms. Chapter 15 Case Study: Deep Learning-Based Approach for Detection and Treatment of Retinopathy of Prematurity. Index.

最近チェックした商品