Introduction to Bayesian Econometrics : A GUIded Toolkit using R (Chapman and Hall/crc Series on Statistics in Business and Economics)

個数:
  • 予約

Introduction to Bayesian Econometrics : A GUIded Toolkit using R (Chapman and Hall/crc Series on Statistics in Business and Economics)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 624 p.
  • 言語 ENG
  • 商品コード 9781032354668

Full Description

Introduction to Bayesian Econometrics: A GUIded Toolkit Using R offers a practical, conceptually clear, and computationally accessible pathway into Bayesian data analysis. Designed for readers who wish to apply Bayesian methods without necessarily investing years in programming, the book combines rigorous treatment of foundational ideas with a graphical user interface (GUI) that allows users to run Bayesian regression models in a user-friendly environment.

The first part develops the mathematical foundations of Bayesian inference by presenting all derivations step-by-step. This transparent treatment of conjugate models, including posterior analysis, marginal likelihoods, and posterior predictive distributions, provides readers with a strong theoretical base for the more advanced material that follows.

The second part focuses on implementation. It introduces the custom GUI for readers with little or no programming experience, demonstrates how to fit Bayesian models using established R packages, and guides more advanced users through programming key components of Bayesian samplers from scratch. This integrated approach enables readers with different backgrounds to engage with Bayesian methods at their preferred level of computational depth.

The third part extends the framework to modern Bayesian econometrics. It covers Bayesian machine learning, causal inference, and approximate methods, illustrating how Bayesian ideas can be applied to contemporary empirical challenges. By combining theory, software, and hands-on computation, the book provides a comprehensive entry point into both classical and modern Bayesian analysis.

Across all parts, the book is designed to support a wide range of users -beginners, intermediate programmers, and advanced learners-. To the best of the author's knowledge, no existing text combines mathematical transparency, software accessibility, and modern Bayesian topics in a single, integrated resource.

Contents

Part I: Foundations: Theory, simulation methods and programming. 1. Basic formal concepts. 2. Conceptual differences between the Bayesian and Frequentist approaches. 3. Cornerstone models: Conjugate families. 4. Simulation methods. Part II: Regression models: A GUIded toolkit. 5. Graphical user interface. 6. Univariate models. 7. Multivariate models. 8. Time series models. 9. Longitudinal/Panel data models. 10. Bayesian model averaging. Part III: Advanced methods: A brief introduction. 11. Semi-parametric and non-parametric models. 12. Bayesian machine learning. 13. Causal inference. 14. Approximate Bayesian methods.

最近チェックした商品