文書アナリティクス:非構造化データ分析の科学と応用入門<br>Text Analytics : An Introduction to the Science and Applications of Unstructured Information Analysis

個数:

文書アナリティクス:非構造化データ分析の科学と応用入門
Text Analytics : An Introduction to the Science and Applications of Unstructured Information Analysis

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 230 p.
  • 言語 ENG
  • 商品コード 9781032245263
  • DDC分類 006.312

Full Description

Text Analytics: An Introduction to the Science and Applications of Unstructured Information Analysis is a concise and accessible introduction to the science and applications of text analytics (or text mining), which enables automatic knowledge discovery from unstructured information sources, for both industrial and academic purposes. The book introduces the main concepts, models, and computational techniques that enable the reader to solve real decision-making problems arising from textual and/or documentary sources.

Features:




Easy-to-follow step-by-step concepts and methods



Every chapter is introduced in a very gentle and intuitive way so students can understand the WHYs, WHAT-IFs, WHAT-IS-THIS-FORs, HOWs, etc. by themselves




Practical programming exercises in Python for each chapter



Includes theory and practice for every chapter, summaries, practical coding exercises for target problems, QA, and sample code and data available for download at https://www.routledge.com/Atkinson-Abutridy/p/book/9781032249797

Contents

1 TEXT ANALYTICS. 1.1 INTRODUCTION 1.2 TEXT MINING AND TEXT ANALYTICS 1.3 TASKS AND APPLICATIONS 1.4 THE TEXT ANALYTICS PROCESS 1.5 SUMMARY 1.6 QUESTIONS 2 NATURAL-LANGUAGE PROCESSING 2.1 INTRODUCTION 2.2 THE SCOPE OF NATURAL-LANGUAGE PROCESSING 2.3 NLP LEVELS AND TASKS 2.3.1 Phonology 2.3.2 Morphology 2.3.3 Lexicon 2.3.4 Syntax 2.3.5 Semantic 2.3.6 Reasoning and Pragmatics 2.1 SUMMARY 2.2 EXERCISES 2.2.1 Morphological Analysis 2.2.2 Lexical Analysis 2.2.3 Syntactic Analysis 3 INFORMATION EXTRACTION 3.1 INTRODUCTION 3.2 RULE-BASED INFORMATION EXTRACTION 3.3 NAMED-ENTITY RECOGNITION 3.3.1 N-Gram Models 3.4 RELATION EXTRACTION 3.5 EVALUATION 3.1 SUMMARY 3.2 EXERCISE 3.2.1 Regular Expressions 3.2.2 Named-Entity Recognition 4 DOCUMENT REPRESENTATION 4.1 INTRODUCTION 4.2 DOCUMENT INDEXING 4.3 VECTOR SPACE MODELS 4.3.1 Boolean Representation Model 4.3.2 Term Frequency Model 4.3.3 Inverse Document Frequency Model 4.1 SUMMARY 4.2 EXERCISES 4.2.1 TFxIDF Representation Model 5 ASSOCIATION RULES MINING 5. INTRODUCTION 5.2 ASSOCIATION PATTERNS 5.3 EVALUATION 5.3.1 Support 5.3.2Confidence 5.3.3 Lift 5.4 ASSOCIATION RULES GENERATION 5.1 SUMMARY 5.2 EXERCISES 5.2.1 Extraction of Association Rules 6 CORPUS-BASED SEMANTIC ANALYSIS 6.1 INTRODUCTION 6.2 CORPUS-BASED SEMANTIC ANALYSIS 6.3 LATENT SEMANTIC ANALYSIS 6.3.1 Creating Vectors with LSA 6.4 WORD2VEC 6.4.1 Embedding Learning 6.4.2 Prediction and Embeddings Interpretation 6.1 SUMMARY 6.2 EXERCISES 6.2.1 Latent Semantic Analysis 6.2. Word Embedding with Word2Vec 7 DOCUMENT CLUSTERING 7.1 INTRODUCTION 7.2 DOCUMENT CLUSTERING 7.3K-MEANS CLUSTERING 7.4 SELF-ORGANIZING MAP 7.4.1Topological Maps Learning 7.1 SUMMARY 7.2 EXERCISES 7.2.1 K-means Clustering 7.2.2 Self-Organizing Maps 8 TOPIC MODELING 8.1 INTRODUCTIO 8.2TOPIC MODELING 8.3 LATENT DIRICHLET ALLOCATION 8.4 EVALUATION 8.1 SUMMARY 8.2 EXERCISES 8.2.1 Modeling Topics with LDA 9 DOCUMENT CATEGORIZATION 9.1INTRODUCTION 9.2 CATEGORIZATION MODELS 9.3 BAYESIAN TEXT CATEGORIZATION 9.4 MAXIMUM ENTROPY CATEGORIZATION 9.5 EVALUATION 9.1 SUMMARY 9.2 EXERCISES 9.2.1 Naïve Bayes Categorization 9.2.2 MaxEnt Categorization

最近チェックした商品