Hybrid Genetic Optimization for IC Chips Thermal Control : With MATLAB® Applications (Advances in Metaheuristics)

個数:

Hybrid Genetic Optimization for IC Chips Thermal Control : With MATLAB® Applications (Advances in Metaheuristics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 156 p.
  • 言語 ENG
  • 商品コード 9781032036854
  • DDC分類 621.3815

Full Description

The continuous miniaturization of integrated circuit (IC) chips and the increase in the sleekness of the design of electronic components have led to the monumental rise of volumetric heat generation in electronic components.

Hybrid Genetic Optimization for IC Chips Thermal Control: With MATLAB® Applications focuses on the detailed optimization strategy carried out to enhance the performance (temperature control) of the IC chips oriented at different positions on a switch-mode power supply (SMPS) board and cooled using air under various heat transfer modes. Seven asymmetric protruding IC chips mounted at different positions on an SMPS board are considered in the present study that is supplied with non-uniform heat fluxes.

Key Features:




Provides guidance on performance enhancement and reliability of IC chips



Provides a detailed hybrid optimization strategy for the optimal arrangement of IC chips on a board



The MATLAB program for the hybrid optimization strategy along with its stability analysis is carried out in a detailed manner



Enables thermal design engineers to identify the positioning of IC chips on the board to increase their reliability and working cycle

Contents

ACKNOWLEDGEMENT

NOMENCLATURE

ABBREVIATIONS

CHAPTER 1

INTRODUCTION

1.1 Need for electronic cooling

1.2 Printed circuit board (PCB) and Integrated circuit (IC) chips

1.3 Various cooling techniques

1.3.1 Air cooling

1.3.2 Phase change material based cooling

1.4 Optimization in heat transfer

CHAPTER 2

STATE OF THE ART STUDIES IN ELECTRONIC COOLING

2.1 Introduction

2.2 Studies pertaining to cooling of discrete IC chips

2.2.1 Studies relevant to Natural convection

2.2.2 Studies relevant to forced and mixed convection cooling of discrete IC chips

2.2.3 Studies pertaining to the phase change material (PCM) based cooling of discrete IC chips

2.3 Summary of the literature survey

2.4 Scope for development

2.5 Different parameters considered for the study

CHAPTER 3

EXPERIMENTAL FACILITY

3.1 Introduction

3.2 Selection of the IC chips and the SMPS board

3.3 Design of the IC chip and SMPS Board

3.3.1 Design of IC Chips

3.3.2 Design of the SMPS (Substrate) board

3.3.2.1 Substrate board design to carry out the laminar forced convection experiments

3.3.2.2 Substrate board design to carry out the experiments using the PCM filled mini-channels

3.4 Experimental setup and Instrumentation

3.4.1 Instruments used for the experimental analysis

3.4.1.1 DC power source

3.4.1.2 Hot wire anemometer

3.4.1.3 Temperature data-logger

3.4.1.4 Digital multimeter

3.4.1.5 Kapton tape

3.5 Experimental methodology

3.5.1 Procedure for conducting laminar forced convection steady-state experiments

3.5.2 Procedure for conducting transient experiments on the PCM filled mini-channels under the natural convection

3.6 Experimental calculations

3.6.1 Experimental calculations under laminar forced convection heat transfer mode

3.6.2 Experimental calculations for the PCM filled mini-channels under the natural convection heat transfer mode

3.7 Error analysis

CHAPTER 4

HYBRID OPTIMIZATION STRATEGY FOR THE ARRANGEMENT OF IC CHIPS UNDER THE MIXED CONVECTION

4.1 Introduction

4.2 Non-dimensional geometrics distance parameter (λ)

4.3 Numerical framework

4.3.1 Governing equations

4.3.2 Boundary conditions

4.3.3 Grid independence study

4.4 Results and discussion

4.4.1 Maximum temperature excess variation of different configurations with λ

4.4.2 Temperature variation for the IC chips of the lower (λ = 0.25103) and the upper extreme (λ = 1.87025) configurations

4.4.3 Empirical correlation

4.5 Hybrid optimization strategy

4.5.1 Artificial neural network (ANN)

4.5.2 Genetic algorithm (GA)

4.5.3 Combination of ANN and GA

4.6 Conclusions

CHAPTER 5

HYBRID OPTIMIZATION STRATEGY TO STUDY THE SUBSTRATE BOARD ORIENTATION EFFECT FOR THE COOLING OF THE IC CHIPS UNDER FORCED CONVECTION

5.1 Introduction.

5.2 Different IC chips combinations considered for the experimentation

5.3 Results and discussion

5.3.1 Temperature variation of the IC chips for different substrate board orientations

5.3.2 Temperature variation of IC chips for different air velocities

5.3.3 Maximum temperature variation of the configurations for different substrate board orientations

5.3.4 Variation of maximum heat transfer coefficient of the configurations for different substrate board orientations

5.4 Empirical Correlation

5.4.1 Correlation for θ in terms of λ

5.4.2 Correlation for θi in terms of the IC chip positions on the substrate board (Z), non-dimensional board orientation (φ) and IC chip sizes (S)

5.4.3 Correlation for Nusselt number of the IC chips in terms of fluid Reynolds number and IC chip's size

5.5 Hybrid optimization strategy to identify the optimal board orientation and optimal configuration of the IC chips

5.5.1 Artificial Neural Network

5.5.2 Genetic algorithm

5.5.3 Combination of ANN and GA

5.6 Numerical investigation for the cooling of the seven asymmetric IC chips under the laminar forced convection

5.6.1 Computational model with governing equations

5.6.2 Boundary conditions

5.6.3 Mesh independence study

5.7 Numerical analysis for the IC chip's temperature under the different substrate board orientations

5.8 Conclusions

CHAPTER 6

NUMERICAL AND EXPERIMENTAL INVESTIGATIONS OF PARAFFIN WAX-BASED MINI-CHANNELS FOR THE COOLING OF IC CHIPS.

6.1 Introduction

6.2 Experiment set-up

6.3 Results and discussion

6.3.1 Temperature variation of IC chips without PCM based mini-channels (WPMC)

6.3.2 Temperature variation of IC chips for case 1 with and without the PCM based mini-channels

6.3.3 Temperature variation of IC chips for case 4 with and without the PCM based mini-channels

6.3.4 Temperature variation of IC chips for all cases with PCM based mini-channels (PMC)

6.3.5 Convective heat transfer coefficient variation for all cases with PCM based mini- channels (PMC)

6.3.6 Correlation

6.4 Numerical simulation of PCM based mini-channels under natural convection

6.5 Conclusions

CHAPTER 7

CONCLUSIONS AND SCOPE FOR FUTURE WORK

7.1 Introduction

7.2 Major conclusions of the present study

7.3 Scope for future work

REFERENCES

Appendix A

MATLAB programme for generating all the possible configurations for the arrangement of 7 non-identical rectangular IC chips on a substrate board.

Appendix B

Calculation of Mixed convection considered for numerical study

Appendix C

Sample calculation for non-dimensional temperature (θ) and Fourier number (Fo)

Index

最近チェックした商品