Tensor Decompositions for Data Science

個数:

Tensor Decompositions for Data Science

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 419 p.
  • 言語 ENG
  • 商品コード 9781009471671
  • DDC分類 006.31

Full Description

Tensors are essential in modern day computational and data sciences. This book explores the foundations of tensor decompositions, a data analysis methodology that is ubiquitous in machine learning, signal processing, chemometrics, neuroscience, quantum computing, financial analysis, social science, business market analysis, image processing, and much more. In this self-contained mathematical, algorithmic, and computational treatment of tensor decomposition, the book emphasizes examples using real-world downloadable open-source datasets to ground the abstract concepts. Methodologies for 3-way tensors (the simplest notation) are presented before generalizing to d-way tensors (the most general but complex notation), making the book accessible to advanced undergraduate and graduate students in mathematics, computer science, statistics, engineering, and physical and life sciences. Additionally, extensive background materials in linear algebra, optimization, probability, and statistics are included as appendices.

Contents

Preface; I. Tensor Basics: 1. Tensors and their subparts; 2. Indexing and reshaping tensors; 3. Tensor operations; II. Tucker Decomposition: 4. Tucker decomposition; 5. Tucker tensor structure; 6. Tucker algorithms; 7. Tucker approximation error; 8. Tensor train decomposition; III. CP Decomposition: 9. Canonical polyacidic (CP) decomposition; 10. Kruskal tensor structure; 11. CP alternating least squares (CP-ALS) optimization; 12. CP gradient-based optimization (CP-OPT); 13. CP nonlinear least squares (CP-NLS) optimization; 14. CP algorithms for incomplete or scarce data; 15. Generalized CP (GCP) decomposition; 16. CP tensor rank and special topics; IV. Closing Observations: 17. Closing observations; V. Review Materials: A. Numerical linear algebra; B. Optimization principles and methods; C. Some statistics and probability; Bibliography; Index.

最近チェックした商品