マルチレベル・モデリング・ハンドブック<br>The SAGE Handbook of Multilevel Modeling

個数:
電子版価格
¥19,206
  • 電子版あり

マルチレベル・モデリング・ハンドブック
The SAGE Handbook of Multilevel Modeling

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 696 p.
  • 言語 ENG
  • 商品コード 9780857025647
  • DDC分類 519.54

基本説明

Contents : Part 1: Multilevel Model Specification and Inference/ Part 2: Variations and Extensions of the Multilevel Model/ Part 3: Practical Considerations in Model Fit and Specification/ Part 4: Selected Applications.

Full Description

In this important new Handbook, the editors have gathered together a range of leading contributors to introduce the theory and practice of multilevel modeling.  

The Handbook establishes the connections in multilevel modeling, bringing together leading experts from around the world to provide a roadmap for applied researchers linking theory and practice, as well as a unique arsenal of state-of-the-art tools. It forges vital connections that cross traditional disciplinary divides and introduces best practice in the field.  



Part I establishes the framework for estimation and inference, including chapters dedicated to notation, model selection, fixed and random effects, and causal inference.
Part II develops variations and extensions, such as nonlinear, semiparametric and latent class models.
Part III includes discussion of missing data and robust methods, assessment of fit and software.
Part IV consists of exemplary modeling and data analyses written by methodologists working in specific disciplines.  

Combining practical pieces with overviews of the field, this Handbook is essential reading for any student or researcher looking to apply multilevel techniques in their own research.

Contents

Notes on Contributors
Preface
Multilevel Modeling - Jeffrey S Simonoff, Marc A Scott and Brian D Marx
PART ONE: MULTILEVEL MODEL SPECIFICATION AND INFERENCE
The Multilevel Model Framework - Jeff Gill and Andrew Womack
Multilevel Model Notation - Establishing the Commonalities - Marc A Scott, Patrick E Shrout and Sharon L Weinberg
Likelihood Estimation in Multilevel Models - Harvey Goldstein
Bayesian Multilevel Models - Ludwig Fahrmeir, Thomas Kneib, and Stefan Lang
The Choice between Fixed and Random Effects - Zac Townsend,Jack Buckley, Masataka Harada and Marc A Scott
Centering Predictors and Contextual Effects - Craig K Enders
Model Selection for Multilevel Models - Russell Steele
Generalized Linear Mixed Models - Overview - Geert Verbeke and Geert Molenberghs
Longitudinal Data Modeling - Nan M Laird and Garrett M Fitzmaurice
Complexities in Error Structures Within Individuals - Vicente Núnez-Antón and Dale L Zimmerman
Design Considerations in Multilevel Studies - Gerard van Breukelen and Mirjam Moerbeek
Multilevel Models and Causal Inference - Jennifer Hill
PART TWO: VARIATIONS AND EXTENSIONS OF THE MULTILEVEL MODEL
Multilevel Functional Data Analysis - Ciprian M Crainiceanu, Brian S Caffo and Jeffrey S Morris
Nonlinear Models - Lang Wu and Wei Liu
Generalized Linear Mixed Models: Estimation and Inference - Charles E McCulloch and John M Neuhaus
Categorical Response Data - Jeroen Vermunt
Smoothing and Semiparametric Models - Jin-Ting Zhang
Penalized Splines and Multilevel Models - Göran Kauermann and Torben Kuhlenkasper
Hierarchical Dynamic Models - Marina Silva Paez and Dani Gamerman
Mixture and Latent Class Models in Longitudinal and Other Settings - Ryan P Browne and Paul D McNicholas
Multivariate Response Data - Helena Geys and Christel Faes
PART THREE: PRACTICAL CONSIDERATIONS IN MODEL FIT AND SPECIFICATION
Robust Methods for Multilevel Analysis - Joop Hox and Rens van de Schoot
Missing Data - Geert Molenberghs and Geert Verbeke
Lack of Fit, Graphics, and Multilevel Model Diagnostics - Gerda Claeskens
Multilevel Models: Is GEE a Robust Alternative in the Presence of Binary Endogenous Regressors? - Robert Crouchley
Software for Fitting Multilevel Models - Andrzej T Galecki and Brady T West
PART FOUR: SELECTED APPLICATIONS
Meta-Analysis - Larry V Hedges and Kimberly S Maier
Modeling Policy Adoption and Impact with Multilevel Methods - James E Monogan III
Multilevel Models in the Social and Behavioral Sciences - David Rindskopf
Survival Analysis and the Frailty Model: The effect of education on survival and disability for older men in England and Wales - Ardo van den Hout and Brian D M Tom
Point-Referenced Spatial Modeling - Andrew O Finley and Sudipto Banerjee
Market Research and Preference Data - Adam Sagan
Multilevel Modeling for Scoial Networks and Relational Data - Marijtje A J Van Duijn
Name Index
Subject Index