Variational Principles of Topology : Multidimensional Minimal Surface Theory (Mathematics and Its Applications (Kluwer Academic Pub) Soviet Series)

個数:
  • ポイントキャンペーン

Variational Principles of Topology : Multidimensional Minimal Surface Theory (Mathematics and Its Applications (Kluwer Academic Pub) Soviet Series)

  • ウェブストア価格 ¥22,609(本体¥20,554)
  • Kluwer Academic Print on Demand(1990/07発売)
  • 外貨定価 US$ 109.99
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 1,025pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 388 p.
  • 言語 ENG
  • 商品コード 9780792302308
  • DDC分類 514

Full Description

One service mathematics has rendered the 'Eot moi, ..., si j'avait JU comment en revenir. human race. h has put common sense back je n'y serais point aUe:' Jules Verne where it belongs, 011 the topmost shelf nen to the dusty canister labeUed 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. H es viside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

Contents

1. Simplest Classical Variational Problems.- §1 Equations of Extremals for Functionals.- §2 Geometry of Extremals.- 2. Multidimensional Variational Problems and Extraordinary (Co)Homology Theory.- §3 The Multidimensional Plateau Problem and Its Solution in the Class of Mapping on Spectra of Manifolds with Fixed Boundary.- §4 Extraordinary (Co)Homology Theories Determined for "Surfaces with Singularities".- §5 The Coboundary and Boundary of a Pair of Spaces (X, A).- §6 Determination of Classes of Admissible Variations of Surfaces in Terms of (Co)Boundary of the Pair(X, A).- §7 Solution of the Plateau Problem (Finding Globally Minimal Surfaces (Absolute Minimum) in the Variational Classes h(A,L,L?) and h(A,$$\tilde L $$
)).- §8 Solution of the Problem of Finding Globally Minimal Surfaces in Each Homotopy Class of Multivarifolds.- 3. Explicit Calculation of Least Volumes (Absolute Minimum) of Topologically Nontrivial Minimal Surfaces.- §9 Exhaustion Functions and Minimal Surfaces.- §10 Definition and Simplest Properties of the Deformation Coefficient of a Vector Field.- §11 Formulation of the Basic Theorem for the Lower Estimate of the Minimal Surface Volume Function.- §12 Proof of the Basic Volume Estimation Theorem.- §13 Certain Geometric Consequences.- §14 Nullity of Riemannian, Compact, and Closed Manifolds. Geodesic Nullity and Least Volumes of Globally Minimal Surfaces of Realizing Type.- §15 Certain Topological Corollaries. Concrete Series of Examples of Globally Minimal Surfaces of Nontrivial Topological Type.- 4. Locally Minimal Closed Surfaces Realizing Nontrivial (Co)Cycies and Elements of Symmetric Space Homotopy Groups.- §16 Problem Formulation. Totally Geodesic Submanifolds in Lie Groups.- §17 Necessary Results Concerning the Topological Structure of Compact Lie Groups and Symmetric Spaces.- §18 Lie Groups Containing a Totally Geodesic Submanifold Necessarily Contain Its Isometry Group.- §19 Reduction of the Problem of the Description of (Co)Cycles Realizable by Totally Geodesic Submanifolds to the Problem of the Description of (Co)Homological Properties of Cartan Models.- §20 Classification Theorem Describing Totally Geodesic Submanifolds Realizing Nontrivial (Co)Cycles in Compact Lie Group (Co) Homology.- §21 Classification Theorem Describing Cocycles in the Compact Lie Group Cohomology Realizable by Totally Geodesic Spheres.- §22 Classification Theorem Describing Elements of Homotopy Groups of Symmetric Spaces of Type I, Realizable by Totally Geodesic Spheres.- 5. Variational Methods for Certain Topological Problems.- §23 Bott Periodicity from the Dirichlet Multidimensional Functional Standpoint.- §24 Three Geometric Problems of Variational Calculus.- 6. Solution of the Plateau Problem in Classes of Mappings of Spectra of Manifolds with Fixed Boundary. Construction of Globally Minimal Surfaces in Variational Classes h(A,L, L?) and h(A, $$\tilde L $$
)).- §25 The Cohomology Case. Computation of the Coboundary of the Pair (X,A) = ?r(Xr,Ar) in Terms of Those of (Xr,Ar).- §26 The Homology Case. Computation of the Boundary of the Pair (X,A) = ?r(Xr,Ar) in Terms of the Boundaries of (Xr,Ar).- §28 The General Isoperimetric Inequality.- §29 The Minimizing Process in Variational Classes and h(A,L,$$\tilde L $$
).- §30 Properties of Density Functions. The Minimality of Each Stratum of the Surface Obtained in the Minimization Process.- §31 Proof of Global Minimality for Constructed Stratified Surfaces.- §32 The Fundamental (Co)Cycles of Globally Minimal Surfaces. Exact Realization and Exact Spanning.- Appendix I. Minimality Test for Lagrangian Submanifolds in Kähler Manifolds. Submanifolds in Kähler Manifolds. Maslov Index in Minimal Surface Theory.- §1 Definitions.- §3 Certain Corollaries. New Examples of Minimal Surfaces. The Maslov Index for Minimal Lagrangian Submanifolds.- Appendix II. Calibrations, Minimal Surface Indices, Minimal Cones of Large Codimensional and the One-Dimensional Plateau Problem.

最近チェックした商品