Information Theory, Inference and Learning Algorithms

個数:

Information Theory, Inference and Learning Algorithms

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 650 p.
  • 言語 ENG
  • 商品コード 9780521642989
  • DDC分類 003.54

Full Description


Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Table of Contents

1. Introduction to information theory
2. Probability, entropy, and inference
3. More about inference
Part I. Data Compression: 4. The source coding
theorem
5. Symbol codes
6. Stream codes
7. Codes for integers
Part II. Noisy-Channel Coding: 8. Correlated
random variables
9. Communication over a noisy channel
10. The noisy-channel coding theorem
11. Error-correcting codes and real channels
Part III. Further Topics in Information Theory:
12. Hash codes: codes for efficient information
retrieval
13. Binary codes
14. Very good linear codes exist
15. Further exercises on information theory
16. Message passing
17. Communication over constrained noiseless
channels
18. Crosswords and codebreaking
19. Why have sex? Information acquisition and
evolution
Part IV. Probabilities and Inference: 20. An
example inference task: clustering
21. Exact inference by complete enumeration
22. Maximum likelihood and clustering
23. Useful probability distributions
24. Exact marginalization
25. Exact marginalization in trellises
26. Exact marginalization in graphs
27. Laplace's method
28. Model comparison and Occam's razor
29. Monte Carlo methods
30. Efficient Monte Carlo methods
31. Ising models
32. Exact Monte Carlo sampling
33. Variational methods
34. Independent component analysis and latent
variable modelling
35. Random inference topics
36. Decision theory
37. Bayesian inference and sampling theory
Part V. Neural Networks: 38. Introduction to
neural networks
39. The single neuron as a classifier
40. Capacity of a single neuron
41. Learning as inference
42. Hopfield networks
43. Boltzmann machines
44. Supervised learning in multilayer networks
45. Gaussian processes
46. Deconvolution
Part VI. Sparse Graph Codes
47. Low-density parity-check codes
48. Convolutional codes and turbo codes
49. Repeat-accumulate codes
50. Digital fountain codes
Part VII. Appendices: A. Notation
B. Some physics
C. Some mathematics
Bibliography
Index.