Time Series and Dynamic Models (Themes in Modern Econometrics)

個数:

Time Series and Dynamic Models (Themes in Modern Econometrics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 688 p.
  • 言語 ENG
  • 商品コード 9780521411462
  • DDC分類 330.015195

基本説明

Edited and translated by Giampiero Gallo. This book provides a unified and comprehensive analysis of the full range of topics that comprise modern time series econometrics.

Full Description

In this book Christian Gourieroux and Alain Monfort provide an up-to-date and comprehensive analysis of modern time series econometrics. They have succeeded in synthesising in an organised and integrated way a broad and diverse literature. While the book does not assume a deep knowledge of economics, one of its most attractive features is the close attention it pays to economic models and phenomena throughout. The coverage represents a major reference tool for graduate students, researchers and applied economists. The book is divided into four sections. Section one gives a detailed treatment of classical seasonal adjustment or smoothing methods. Section two provides a thorough coverage of various mathematical tools. Section three is the heart of the book, and is devoted to a range of important topics including causality, exogeneity shocks, multipliers, cointegration and fractionally integrated models. The final section describes the main contribution of filtering and smoothing theory to time series econometric problems.

Contents

Preface; 1. Introduction; Part I. Traditional Methods: 2. Linear regression for seasonal adjustment; 3. Moving averages for seasonal adjustment; 4. Exponential smoothing methods; Part II. Probabilistic and Statistical Properties of Stationary Processes: 5. Some results on the univariate processes; 6. The Box and Jenkins method for forecasting; 7. Multivariate time series; 8. Time-series representations; 9. Estimation and testing (stationary case); Part III. Time-series Econometrics: Stationary and Nonstationary Models: 10. Causality, exogeneity, and shocks; 11. Trend components; 12. Expectations; 13. Specification analysis; 14. Statistical properties of nonstationary processes; Part IV. State-space Models: 15. State-space models and the Kalman filter; 16. Applications of the state-space model; References; Tables; Index.

最近チェックした商品