Weather and Climate : Applications of Machine Learning and Artificial Intelligence (Developments in Weather and Climate Science)

個数:
  • 予約

Weather and Climate : Applications of Machine Learning and Artificial Intelligence (Developments in Weather and Climate Science)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 300 p.
  • 言語 ENG
  • 商品コード 9780443403606

Full Description

Weather and Climate: Applications of Machine Learning and Artificial Intelligence provides a comprehensive exploration of machine learning in the context of weather forecasting and climate research. The authors begin with an introduction to the fundamentals and statistical tools of machine learning, followed by an overview of various machine learning models. Emulation and machine learning of sub-grid scale parametrizations are discussed, along with the application of AI/ML in weather forecasting and climate models. Next, the book delves into the concept of explainable AI (XAI) methods for understanding ML and AI models, as well as the use of generative AI in weather and climate research. It explores the interface of data assimilation and machine learning for weather forecasting, showcasing case studies of machine learning applied to environmental monitoring data. The book concludes by looking ahead to the future of ML and AI in climate and weather-related research, providing references for further reading. This comprehensive guide offers valuable insights into the intersection of machine learning, artificial intelligence, and atmospheric science, highlighting the potential for innovation and advancement in weather and climate research.

Contents

1. Introduction to Machine Learning - Fundamentals and Statistical Tools
2. Introduction to Machine Learning Models
3. Emulation and machine learning of sub-grid scale parametrisations
4. AI/ML in weather forecasting and climate models
5. XAI - explainable AI methods for understanding ML and AI models
6. Generative AI in weather and climate research
7. The interface of Data Assimilation and Machine Learning for Weather Forecasting
8. Case studies of Machine Learning applied to Environmental Monitoring Data
9. Future of ML and AI in climate and weather-related research
10. References/Further Reading

最近チェックした商品