Spatio-Temporal Learning and Monitoring for Complex Dynamic Processes with Irregular Data

個数:

Spatio-Temporal Learning and Monitoring for Complex Dynamic Processes with Irregular Data

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 258 p.
  • 言語 ENG
  • 商品コード 9780443336751
  • DDC分類 620

Full Description

Spatio-Temporal Learning Using Irregular Data for Complex Dynamic Processes introduces learning, modeling, and monitoring methods for highly complex dynamic processes with irregular data. Two classes of robust modeling methods are highlighted, including low-rank characteristic of matrices and heavy-tailed characteristic of distributions. In this class, the missing data, ambient noise, and outlier problems are solved using low-rank matrix complement for monitoring model development. Secondly, the Laplace distribution is explored, which is adopted to measure the process uncertainty to develop robust monitoring models.

The book not only discusses the complex models but also their real-world applications in industry.

Contents

1. Background
2. Low-rank characteristic and temporal correlation analytics for incipient industrial fault detection with missing data
3. A robust dissimilarity distribution analytics with Laplace distribution for incipient fault detection
4. Variational Bayesian Student's t-mixture model with closed-form missing value imputation for robust process monitoring of low-quality data
5. Stationary subspace analysis based hierarchical model for batch process monitoring
6. Recursive cointegration analytics for adaptive monitoring of nonstationary industrial processes with both static and dynamic variations
7. Incremental variational Bayesian Gaussian mixture model with decremental optimization for distribution accommodation and fine-scale adaptive process monitoring
8. MoniNet with concurrent analytics of temporal and spatial information for fault detection in industrial processes
9. Meticulous process monitoring with multiscale convolutional feature extraction
10. Summary and prospect

最近チェックした商品