Data Science and Interactive Visualization Tools for the Analysis of Qualitative Evidence

個数:
  • 予約

Data Science and Interactive Visualization Tools for the Analysis of Qualitative Evidence

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 250 p.
  • 言語 ENG
  • 商品コード 9780443219610

Full Description

Data Science and Interactive Visualization Tools for the Analysis of Qualitative Evidence empowers qualitative and mixed methods researchers in the data science movement by offering no-code, cost-free software access so that they can apply cutting-edge and innovative methods to synthetize qualitative data. The book builds on the idea that qualitative and mixed methods researchers should not have to learn to code to benefit from rigorous open-source, cost-free software that uses artificial intelligence, machine learning, and data visualization tools—just as people do not need to know C++ or TypeScript to benefit from Microsoft Word. The real barrier is the hundreds of R code lines required to apply these concepts to their databases. By removing the coding proficiency hurdle, this book will empower their research endeavors and help them become active members of and contributors to the applied data science community. The book offers a comprehensive explanation of data science and machine learning methodologies, along with access to software application tools to implement these techniques without any coding proficiency. The book addresses the need for innovative tools that enable researchers to tap into the insights that come out of cutting-edge data science tools with absolutely no computer language literacy requirements.

Contents

Part I. Introduction to Data Science and Interactive Visualization Tools for the Analysis of Qualitative Evidence
1. Truly Equal-Status Mixed Methods Design (TESM2D)
2. Textual and Relational data (TRD)
3. Digital Ethnography, Data Science, and Ethical Considerations
4. Bool Plan and Organization

Part II. Network modeling frameworks
5. Network Analysis of Qualitative Data (NAQD)
6. Graphical Retrieval and Analysis of Temporal Information Systems (GRATIS)
7. Visual Evolution, Replay, and Integration of Temporal Analytic Systems (VERITAS)
8. Relational Frameworks for Data Mining and Data Retrieval via Co-authorship Networks (CN)

Part III. Machine Driven Text Classification and Statistical Modeling frameworks
9. Latent Code Identification (LACOID)
10. Machine Driven Classification of Open-ended Responses (MDCOR)
11. Machine Driven Literature Classification (MDLC)

Part IV. Integration of Network and Text Classification Analyses
12. In what instances should or could we integrate the analyses and frameworks described in parts I and II?
13. Incorporating Spatial Context for Data StoryTelling: GeoStoryTelling
14. Sentiment Network Modeling
15. Closing thoughts and future work

最近チェックした商品