Complex Systems Science in BioMedicine (International Topics in Biomedical Engineering)

個数:

Complex Systems Science in BioMedicine (International Topics in Biomedical Engineering)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 1,000 p./サイズ 172 illus.
  • 言語 ENG
  • 商品コード 9780387302416

基本説明

The core of the book features the application of the aforementioned techniques to specific biomedical topics, starting with the molecular and cellular levels, to whole organ systems (such as the brain and the immune system), leading to the description of dynamic disease processes such as cancer and aging.

Full Description

Complex Systems Science in Biomedicine
Thomas S. Deisboeck and J. Yasha Kresh

Complex Systems Science in Biomedicine covers the emerging field of systems science involving the application of physics, mathematics, engineering and computational methods and techniques to the study of biomedicine including nonlinear dynamics at the molecular, cellular, multi-cellular tissue, and organismic level. With all chapters helmed by leading scientists in the field, Complex Systems Science in Biomedicine's goal is to offer its audience a timely compendium of the ongoing research directed to the understanding of biological processes as whole systems instead of as isolated component parts.    
In Parts I & II, Complex Systems Science in Biomedicine provides a general systems thinking perspective and presents some of the fundamental theoretical underpinnings of this rapidly emerging field. Part III then follows with a multi-scaled approach, spanning from the molecular to macroscopic level, exemplified by studying such diverse areas as molecular networks and developmental processes, the immune and nervous systems, the heart, cancer and multi-organ failure.  The volume concludes with Part IV that addresses methods and techniques driven in design and development by this new understanding of biomedical science.

Key Topics Include:
• Historic Perspectives of General Systems Thinking
• Fundamental Methods and Techniques for Studying Complex Dynamical Systems
• Applications from Molecular Networks to Disease Processes
• Enabling Technologies for Exploration of  Systems in the Life Sciences

Complex Systems Science in Biomedicine is essential reading for experimental, theoretical, and interdisciplinary scientists working in the biomedical research field interested in a comprehensive overview of thisrapidly emerging field.  

About the Editors:
Thomas S. Deisboeck is currently Assistant Professor of Radiology at Massachusetts General Hospital and Harvard Medical School in Boston. An expert in interdisciplinary cancer modeling, Dr. Deisboeck is Director of the Complex Biosystems Modeling Laboratory which is part of the Harvard-MIT Martinos Center for Biomedical Imaging.

J. Yasha Kresh is currently Professor of Cardiothoracic Surgery and Research Director, Professor of Medicine and Director of Cardiovascular Biophysics at the Drexel University College of Medicine. An expert in dynamical systems, he holds appointments in the School of Biomedical Engineering and Health Systems, Dept. of Mechanical Engineering and Molecular Pathobiology Program. Prof. Kresh is Fellow of the American College of Cardiology, American Heart Association, Biomedical Engineering Society, American Institute for Medical and Biological Engineering.

Contents

Integrative Systems View of Life: Perspectives from General Systems Thinking.- Complex Systems Science: The Basics.- Methods and Techniques of Complex Systems Science: An Overview.- Nonlinear Dynamical Systems.- Biological Scaling and Physiological Time: Biomedical Applications.- The Architecture of Biological Networks.- Robustness in Biological Systems: A Provisional Taxonomy.- Complex Adaptive Biosystems: A Multi-Scaled Approach.- Noise in Gene Regulatory Networks.- Modeling RNA Folding.- Protein Networks.- Electronic Cell Environments: Combining Gene, Protein, and Metabolic Networks.- Tensegrity, Dynamic Networks, and Complex Systems Biology: Emergence in Structural and Information Networks Within Living Cells.- Spatiotemporal Dynamics of Eukaryotic Gradient Sensing.- Patterning by EGF Receptor: Models from Drosophila Development.- Developmental Biology: Branching Morphogenesis.- Modeling Cardiac Function.- Cardiac Oscillations and Arrhythmia Analysis.- How Distributed Feedbacks from Multiple Sensors Can Improve System Performance: Immunology and Multiple-Organ Regulation.- Microsimulation of Inducible Reorganization in Immunity.- The Complexity of the Immune System: Scaling Laws.- Neurobiology and Complex Biosystem Modeling.- Modeling Spontaneous Episodic Activity in Developing Neuronal Networks.- Clinical Neuro-Cybernetics: Motor Learning in Neuronal Systems.- Modeling Cancer as A Complex Adaptive System: Genetic Instability and Evolution.- Spatial Dynamics in Cancer.- Modeling Tumors as Complex Biosystems: An Agent-Based Approach.- The Complexity of Dynamic Host Networks.- Physiologic Failure: Multiple Organ Dysfunction Syndrome.- Aging as a Process of Complexity Loss.- Enabling Technologies.- Biomedical Microfluidics and Electrokinetics.- Gene Selection Strategies in Microarray Expression Data: Applications to Case-Control Studies.- Application of Biomolecular Computing to Medical Science: A Biomolecular Database System for Storage, Processing, and Retrieval of Genetic Information and Material.- Tissue Engineering: Multiscaled Representation of Tissue Architecture and Function.- Imaging the Neural Systems for Motivated Behavior and Their Dysfunction in Neuropsychiatric Illness.- A Neuromorphic System.- A Biologically Inspired Approach Toward Autonomous Real-World Robots.- Virtual Reality, Intraoperative Navigation, and Telepresence Surgery.

最近チェックした商品