Non-negative Matrices and Markov Chains (Springer Series in Statistics) (Rev. pr. 2006. XIII, 279 p. 23,5 cm)

個数:

Non-negative Matrices and Markov Chains (Springer Series in Statistics) (Rev. pr. 2006. XIII, 279 p. 23,5 cm)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 287 p.
  • 言語 ENG
  • 商品コード 9780387297651

基本説明

A photographic reproduction of the book of the same title published in 1981, for which there has been continuing demand on account of its accessible technical level. This printing adds an additional bibliography on coefficients of ergodicity and a list of corrigenda.

Full Description

Since its inception by Perron and Frobenius, the theory of non-negative matrices has developed enormously and is now being used and extended in applied fields of study as diverse as probability theory, numerical analysis, demography, mathematical economics, and dynamic programming, while its development is still proceeding rapidly as a branch of pure mathematics in its own right. While there are books which cover this or that aspect of the theory, it is nevertheless not uncommon for workers in one or another branch of its development to be unaware of what is known in other branches, even though there is often formal overlap. One of the purposes of this book is to relate several aspects of the theory, insofar as this is possible. The author hopes that the book will be useful to mathematicians; but in particular to the workers in applied fields, so the mathematics has been kept as simple as could be managed. The mathematical requisites for reading it are: some knowledge of real-variable theory, and matrix theory; and a little knowledge of complex-variable; the emphasis is on real-variable methods. (There is only one part of the book, the second part of 55.5, which is of rather specialist interest, and requires deeper knowledge.) Appendices provide brief expositions of those areas of mathematics needed which may be less g- erally known to the average reader.

Contents

Finite Non-Negative Matrices.- Fundamental Concepts and Results in the Theory of Non-negative Matrices.- Some Secondary Theory with Emphasis on Irreducible Matrices, and Applications.- Inhomogeneous Products of Non-negative Matrices.- Markov Chains and Finite Stochastic Matrices.- Countable Non-Negative Matrices.- Countable Stochastic Matrices.- Countable Non-negative Matrices.- Truncations of Infinite Stochastic Matrices.

最近チェックした商品