Safety Assurance under Uncertainties : From Software to Cyber-Physical/Machine Learning Systems

個数:

Safety Assurance under Uncertainties : From Software to Cyber-Physical/Machine Learning Systems

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 348 p.
  • 言語 ENG
  • 商品コード 9780367554019
  • DDC分類 005.8

Full Description

Safety assurance of software systems has never been as imminent a problem as it is today. Practitioners and researchers who work on the problem face a challenge unique to modern software systems: uncertainties. For one, the cyber-physical nature of modern software systems as exemplified by automated driving systems mandates environmental uncertainties to be addressed and the resulting hazards to be mitigated. Besides, the abundance of statistical machine-learning components massive numerical computing units for statistical reasoning such as deep neural networks make systems hard to explain, understand, analyze or verify.

The book is the first to provide a comprehensive overview of such united and interdisciplinary efforts. Driven by automated driving systems as a leading example, the book describes diverse techniques to specify, model, test, analyze, and verify modern software systems. Coming out of a collaboration between industry and basic academic research, the book covers both practical analysis techniques (readily applicable to existing systems) and more long-range design techniques (that call for new designs but bring a greater degree of assurance).

The book provides high-level intuitions and use-cases of each technique, rather than technical details, with plenty of pointers for interested readers.

Contents

Preface. Optimisation-Based Falsification. Monitoring Temporal Specifications. Formal Specification of Temporal Properties. Testing for Machine Learning-Based Systems. Safety Standards and Safety Assurance Framework for ADS. Uncertainty-wise Testing. Decision Making for Automated Driving. Formal Modelling. Theorem Proving at Work. Search-Based Analysis and Engineering. Fault Localisation and Understanding. Index.

最近チェックした商品