Computational Intelligence Techniques and Their Applications to Software Engineering Problems (Computational Intelligence Techniques)

個数:

Computational Intelligence Techniques and Their Applications to Software Engineering Problems (Computational Intelligence Techniques)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 251 p.
  • 言語 ENG
  • 商品コード 9780367529802
  • DDC分類 006.3

Full Description

Computational Intelligence Techniques and Their Applications to Software Engineering Problems focuses on computational intelligence approaches as applicable in varied areas of software engineering such as software requirement prioritization, cost estimation, reliability assessment, defect prediction, maintainability and quality prediction, size estimation, vulnerability prediction, test case selection and prioritization, and much more. The concepts of expert systems, case-based reasoning, fuzzy logic, genetic algorithms, swarm computing, and rough sets are introduced with their applications in software engineering. The field of knowledge discovery is explored using neural networks and data mining techniques by determining the underlying and hidden patterns in software data sets. Aimed at graduate students and researchers in computer science engineering, software engineering, information technology, this book:




Covers various aspects of in-depth solutions of software engineering problems using computational intelligence techniques



Discusses the latest evolutionary approaches to preliminary theory of different solve optimization problems under software engineering domain



Covers heuristic as well as meta-heuristic algorithms designed to provide better and optimized solutions



Illustrates applications including software requirement prioritization, software cost estimation, reliability assessment, software defect prediction, and more



Highlights swarm intelligence-based optimization solutions for software testing and reliability problems

Contents

1. Implementation of Artificial Intelligence Techniques for Improving Software Engineering. 2. Software effort estimation: Machine learning vs. Hybrid algorithms. 3. Implementation of Data Mining Techniques for Software Development Effort Estimation. 4. Empirical Software Measurements with Machine Learning. 5. Project Estimation And Scheduling Using Computational Intelligence. 6. Application of Intuitionistic Fuzzy Similarity Measures in Strategic Decision-Making. 7. Nature-Inspired Approaches to Test Suite Minimization for Regression Testing. 8. Identification and Construction of Reusable Components from Object-Oriented Legacy Systems using various Software Artifacts. 9. A Software Component Evaluation and Selection Approach Using Fuzzy Logic. 10. Smart Predictive Analysis for Testing Messaging-passing Applications. 11. Status of Agile Practices in the Software Industry in 2019. 12. Agile Methodologies: A Performance Analysis To Enhance Software Quality. 13. Pre-Trained Deep Neural Networks for Age Prediction from IRIS Biometrics. 14. Hybrid Intelligent Decision Support Systems to Select The Optimum Fuel Blend in CI Engine. 15. Understanding the Significant Challenges of Software Engineering in Cloud Environment.

最近チェックした商品