北川源四郎(著)/時系列モデル化入門とRによる応用(第2版)<br>Introduction to Time Series Modeling with Applications in R (Chapman & Hall/crc Monographs on Statistics and Applied Probability) (2ND)

個数:
電子版価格
¥9,933
  • 電子版あり
  • ポイントキャンペーン

北川源四郎(著)/時系列モデル化入門とRによる応用(第2版)
Introduction to Time Series Modeling with Applications in R (Chapman & Hall/crc Monographs on Statistics and Applied Probability) (2ND)

  • ウェブストア価格 ¥32,214(本体¥29,286)
  • Chapman & Hall/CRC(2020/08発売)
  • 外貨定価 US$ 160.00
  • ゴールデンウィーク ポイント2倍キャンペーン対象商品(5/6まで)
  • ポイント 584pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 340 p.
  • 言語 ENG
  • 商品コード 9780367187330
  • DDC分類 519.55

Full Description

Praise for the first edition:

[This book] reflects the extensive experience and significant contributions of the author to non-linear and non-Gaussian modeling. ... [It] is a valuable book, especially with its broad and accessible introduction of models in the state-space framework.

-Statistics in Medicine

What distinguishes this book from comparable introductory texts is the use of state-space modeling. Along with this come a number of valuable tools for recursive filtering and smoothing, including the Kalman filter, as well as non-Gaussian and sequential Monte Carlo filters.

-MAA Reviews

Introduction to Time Series Modeling with Applications in R, Second Edition covers numerous stationary and nonstationary time series models and tools for estimating and utilizing them. The goal of this book is to enable readers to build their own models to understand, predict and master time series. The second edition makes it possible for readers to reproduce examples in this book by using the freely available R package TSSS to perform computations for their own real-world time series problems.

This book employs the state-space model as a generic tool for time series modeling and presents the Kalman filter, the non-Gaussian filter and the particle filter as convenient tools for recursive estimation for state-space models. Further, it also takes a unified approach based on the entropy maximization principle and employs various methods of parameter estimation and model selection, including the least squares method, the maximum likelihood method, recursive estimation for state-space models and model selection by AIC.

Along with the standard stationary time series models, such as the AR and ARMA models, the book also introduces nonstationary time series models such as the locally stationary AR model, the trend model, the seasonal adjustment model, the time-varying coefficient AR model and nonlinear non-Gaussian state-space models.

About the Author:

Genshiro Kitagawa is a project professor at the University of Tokyo, the former Director-General of the Institute of Statistical Mathematics, and the former President of the Research Organization of Information and Systems.

Contents

1. Introduction and Preparatory Analysis. 2. The Covariance Function. 3. The Power Spectrum and the Periodogram. 4. Statistical Modeling. 5. The Least Squares Method. 6. Analysis of Time Series Using ARMA Models. 7. Estimation of an AR Model. 8. The Locally Stationary AR Model. 9. Analysis of Time Series with a State-Space Model. 10. Estimation of the ARMA Model. 11. Estimation of Trends. 12. The Seasonal Adjustment Model. 13. Time-Varying Coefficient AR Model. 14. Non-Gaussian State-Space Model. 15. The Sequential Monte Carlo Filter. 17. Simulations.

最近チェックした商品