医療関係者のための統計の解釈<br>Interpreting Statistical Findings : A Guide for Health Professionals and Students

個数:

医療関係者のための統計の解釈
Interpreting Statistical Findings : A Guide for Health Professionals and Students

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 214 p.
  • 言語 ENG
  • 商品コード 9780335235964
  • DDC分類 570

基本説明

This new book is the ideal 'how to' guide to interpreting statistics from other people's research - and is a must have for anyone doing a literature based project involving research statistics.

Full Description


Need help interpreting other people's health research?This book offers guidance for students undertaking a critical review of quantitative research papers and will also help health professionals to understand and interpret statistical results within health-related research papers. The book requires little knowledge of statistics, includes worked examples and is broken into the following sections: A worked example of a published RCT and a health surveyExplanations of basic statistical conceptsExplanations of common statistical tests A quick guide to statistical terms and conceptsWalker and Almond have helpfully cross-referenced throughout, so those requiring in-depth explanations or additional worked examples can locate these easily.Interpreting Statistical Research Findings is key reading for nursing and health care students and will help make this area of research much easier to tackle!

Contents

Part 1 Worked ExamplesThe randomised controlled trialThe Health survey Part 2 Interpreting statistical concepts Measuring variables: continuous, ordinal and categorical data Describing continuous data: The normal distribution Describing nonparametric dataMeasuring concepts: Validity and reliability Sampling data: Probability and non-probability samples Sample size: criteria for judging adequacy Testing hypotheses: what does p actually mean?Part 3 Statistical tests Introduction to inferential statistics Comparing two independent (unrelated) groups: independent (unrelated) t test, Mann-Whitney U test, contingency analysis- Fisher's exact test and Chi-square test Comparing three or more independent (unrelated) groups: One-way ANOVA, Kruskal Wallis test and Chi-square test Comparing two sets of related data: Matched pairs or single-sample repeated measures- related (paired) t test, Wilcoxon signed rank test, sign test and McNemar's test Complex group comparisons: ANOVA / ANCOVA, Friedman two-way ANOVA by ranks and Cochrane Q test Simple tests of association: Correlation and linear regression complex associations: Multiple and logistic regressionPart 4 Quick reference guideI Framework for statistical review II Glossary of termsIII Guide to statistical symbols IV Overview of common statistical tests V Guide to the assumptions that underpin statistical tests VI Summary of statistical test selection and results VII Extracts from statistical tablesNER(01): WOW

最近チェックした商品