Building Agentic AI : Workflows, Fine-Tuning, Optimization, and Deployment (Pearson Ai Signature Series)

個数:
  • 予約

Building Agentic AI : Workflows, Fine-Tuning, Optimization, and Deployment (Pearson Ai Signature Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 320 p.
  • 言語 ENG
  • 商品コード 9780135489680

Full Description

Transform Your Business with Intelligent AI to Drive Outcomes

Building reactive AI applications and chatbots is no longer enough. The competitive advantage belongs to those who can build AI that can respond, reason, plan, and execute. Building Agentic AI: Workflows, Fine-Tuning, Optimization, and Deployment takes you beyond basic chatbots to create fully functional, autonomous agents that automate real workflows, enhance human decision-making, and drive measurable business outcomes across high-impact domains like customer support, finance, and research.

Whether you're a developer deploying your first model, a data scientist exploring multi-agent systems and distilled LLMs, or a product manager integrating AI workflows and embedding models, this practical handbook provides tried and tested blueprints for building production-ready systems. Harness the power of reasoning models for applications like computer use, multimodal systems to work with all kinds of data, and fine-tuning techniques to get the most out of AI. Learn to test, monitor, and optimize agentic systems to keep them reliable and cost-effective at enterprise scale.

Master the complete agentic AI pipeline



Design adaptive AI agents with memory, tool use, and collaborative reasoning capabilities
Build robust RAG workflows using embeddings, vector databases, and LangGraph state management
Implement comprehensive evaluation frameworks beyond accuracy, including precision, recall, and latency metrics
Deploy multimodal AI systems that seamlessly integrate text, vision, audio, and code generation
Optimize models for production through fine-tuning, quantization, and speculative decoding techniques
Navigate the bleeding edge of reasoning LLMs and computer-use capabilities
Balance cost, speed, accuracy, and privacy in real-world deployment scenarios
Create hybrid architectures that combine multiple agents for complex enterprise applications

Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Contents

Series Editor Foreword xi
Preface xiii
Acknowledgments xvii
About the Author xix

Part I: Getting Started with Foundations of AI, LLMs, and Experimentation 1

Chapter 1: An Introduction to AI, LLMs, and Agents 3
Introduction 3
The Basics of Large Language Models 3
The Family Tree of LLM Tasks 10
Alignment 10
Prompt Engineering 12
Special LLM Features 17
LLM Workflows 25
AI Agents 25
Conclusion 28

Chapter 2: First Steps with LLM Workflows 31
Introduction 31
Case Study 1: Text-to-SQL Workflow 32
Conclusion 57

Chapter 3: AI Evaluation Plus Experimentation 59
Introduction 59
Evaluating and Experimenting with LLMs 59
Case Study 1, Revisited: The Text-to-SQL Workflow 61
Case Study 2: A "Simple" Summary Prompt 77
Conclusion 83

Part II: Moving the Needle with AI Agents, Workflows, and Multimodality 85

Chapter 4: First Steps with AI Agents and Multi-Agent Workloads 87
Introduction 87
Case Study 3: From RAG to Agents 88
When Should You Use Workflows Versus Agents? 104
Case Study 4: A (Nearly) End-to-End SDR 105
Evaluating Agents 118
Conclusion 121

Chapter 5: Enhancing Agents with Prompting, Workflows, and More Agents 123
Introduction 123
Case Study 5: Agents Complying with Policies Plus Synthetic Data Generation 124
Building Our Policy Bot Agent 127
Case Study 6: Deep Research Plus Content Generation Agentic Workflows 133
Multi-Agent Architectures 141
Case Study 4, Revisited: Adding a Supervisor Agent to Our SDR Team 148
Case Study 7: Agentic Tool Selection Performance 149
Conclusion 157

Chapter 6: Moving Beyond Natural Language: Multimodal and Coding AI 159
Introduction 159
Introduction to Multimodal AI 159
Case Study 8: Image Retrieval Pipelines 168
Case Study 9: Visual Q/A with Moondream 174
Case Study 10: Coding Agent with Image Generation, File Use, and Moondream 176
The Case for Any-to-Any Models 188
Conclusion 191

Part III: Optimizing Workloads with Fine-Tuning, Frameworks, and Reasoning LLMs 193

Chapter 7: Reasoning LLMs and Computer Use 195
Introduction 195
Seven Pillars of Intelligence 195
Case Study 11: Benchmarking Reasoning Models 198
Reasoning Models for ReAct Agents 210
Case Study 12: Computer Use 212
Conclusion 224

Chapter 8: Fine-Tuning AI for Calibrated Performance 225
Introduction 225
Case Study 13: Classification Versus Multiple Choice 227
Case Study 14: Domain Adaptation 245
Conclusion 258

Chapter 9: Optimizing AI Models for Production 261
Introduction 261
Model Compression 261
Case Study 15: Speculative Decoding with Qwen 269
Case Study 16: Voice Bot--Need for Speed 272
Case Study 17: Fine-Tuning Matryoshka Embeddings 277
Case Study N + 1: What Comes Next? 284

Index 287