医用画像解析のための深層学習<br>Deep Learning for Medical Image Analysis (The Miccai Society book Series)

個数:
電子版価格
¥16,924
  • 電子版あり

医用画像解析のための深層学習
Deep Learning for Medical Image Analysis (The Miccai Society book Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 458 p.
  • 言語 ENG
  • 商品コード 9780128104088
  • DDC分類 616.0754

Full Description

Deep learning is providing exciting solutions for medical image analysis problems and is seen as a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component have been applied to medical image detection, segmentation and registration, and computer-aided analysis, using a wide variety of application areas.

Deep Learning for Medical Image Analysis is a great learning resource for academic and industry researchers in medical imaging analysis, and for graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis.

Contents

PART 1: INTRODUCTION
1. An introduction to neural network and deep learning (covering CNN, RNN, RBM, Autoencoders)
Heung-Il Suk
2. An Introduction to Deep Convolutional Neural Nets for Computer Vision
Suraj Srinivas, Ravi K. Sarvadevabhatla, Konda R. Mopuri, Nikita Prabhu, Srinivas S.S. Kruthiventi and R. Venkatesh Babu

PART 2: MEDICAL IMAGE DETECTION AND RECOGNITION
3. Efficient Medical Image Parsing
Florin C. Ghesu, Bogdan Georgescu and Joachim Hornegger
4. Multi-Instance Multi-Stage Deep Learning for Medical Image Recognition
Zhennan Yan, Yiqiang Zhan, Shaoting Zhang, Dimitris Metaxas and Xiang Sean Zhou
5. Automatic Interpretation of Carotid Intima-Media Thickness Videos Using Convolutional Neural Networks 
Nima Tajbakhsh, Jae Y. Shin, R. Todd Hurst, Christopher B. Kendall and Jianming Liang
6. Deep Cascaded Networks for Sparsely Distributed Object Detection from Medical Images
Hao Chen, Qi Dou, Lequan Yu, Jing Qin, Lei Zhao, Vincent C.T. Mok, Defeng Wang, Lin Shi and Pheng-Ann Heng
7. Deep Voting and Structured Regression for Microscopy Image Analysis
Yuanpu Xie, Fuyong Xing and Lin Yang

PART 3 MEDICAL IMAGE SEGMENTATION
8. Deep Learning Tissue Segmentation in Cardiac Histopathology Images
Jeffrey J. Nirschl, Andrew Janowczyk, Eliot G. Peyster, Renee Frank, Kenneth B. Margulies, Michael D. Feldman and Anant Madabhushi
9. Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching
Yanrong Guo, Yaozong Gao and Dinggang Shen
10. Characterization of Errors in Deep Learning-Based Brain MRI Segmentation
Akshay Pai, Yuan-Ching Teng, Joseph Blair, Michiel Kallenberg, Erik B. Dam, Stefan Sommer, Christian Igel and Mads Nielsen

PART 4 MEDICAL IMAGE REGISTRATION
11. Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning
Shaoyu Wang, Minjeong Kim, Guorong Wu and Dinggang Shen
12. Convolutional Neural Networks for Robust and Real-Time 2-D/3-D Registration
Shun Miao, Jane Z. Wang and Rui Liao

PART 5 COMPUTER-AIDED DIAGNOSIS AND DISEASE QUANTIFICATION
13. Chest Radiograph Pathology Categorization via Transfer Learning
Idit Diamant, Yaniv Bar, Ofer Geva, Lior Wolf, Gali Zimmerman, Sivan Lieberman, Eli Konen and Hayit Greenspan
14. Deep Learning Models for Classifying Mammogram Exams Containing Unregistered Multi-View Images and Segmentation Maps of Lesions
Gustavo Carneiro, Jacinto Nascimento and Andrew P. Bradley
15. Randomized Deep Learning Methods for Clinical Trial Enrichment and Design in Alzheimer's Disease
Vamsi K. Ithapu, Vikas Singh and Sterling C. Johnson
16. Deep Networks and Mutual Information Maximization for Cross-Modal Medical Image Synthesis
Raviteja Vemulapalli, Hien Van Nguyen and S.K. Zhou
17. Natural Language Processing for Large-Scale Medical Image Analysis Using Deep Learning
Hoo-Chang Shin, Le Lu and Ronald M. Summers

最近チェックした商品