出版社内容情報
「大規模言語モデル入門」の続編です。「大規模言語モデル入門」は理論と実装のバランスをとって構成しましたが、本書では実装部分で扱い切れなかった話題を取り上げ、特に大規模言語モデルの評価と生成LLMに関連する解説を充実させます。「大規模言語モデル入門」の9章に続き、10章から始まります。
10章では、後続する章で行う言語モデルの評価方法について解説します。自動評価と人手評価の2つの側面から、ベンチマーク、評価指標、具体的な評価ツールやデータセットなどを取り上げます。11から13章では、主に大規模言語モデルの性能を上げるためのトピックとして、指示チューニング、人間のフィードバックからの学習、RAGに焦点を当て、それぞれの実装方法、利用するデータセット、評価の方法について解説します。14章では大規模言語モデルの学習における並列・分散処理について詳しく解説します。大規模なデータを限られた計算資源で学習させるノウハウは多くのエンジニアにとって有益な情報となるでしょう。
大規模言語モデルの性能を高めるための各トピックの実装とともに、それぞれの評価について理解できる一冊です。
目次
第10章 性能評価(モデルの性能評価とは;評価指標を用いた自動評価;LLMを用いた自動評価)
第11章 指示チューニング(指示チューニングとは;指示チューニングの実装;指示チューニングしたモデルの評価)
第12章 選好チューニング(選好チューニングとは;選好チューニングの実装;選好チューニングの評価)
第13章 RAG(RAGとは;基本的なRAGのシステムの実装;RAG向けにLLMをチューニングする;RAGの性能評価)
第14章 分散並列学習(分散並列学習とは;さまざまな分散並列学習手法;LLMの分散並列学習)
著者等紹介
山田育矢[ヤマダイクヤ]
株式会社Studio Ousiaチーフサイエンティスト・名古屋大学客員教授・理化学研究所AIP客員研究員2007年にStudio Ousiaを創業し、自然言語処理の技術開発に従事。2016年3月に慶應義塾大学大学院政策・メディア研究科博士後期課程を修了し、博士(学術)を取得。大規模言語モデルLUKEの開発者
鈴木正敏[スズキマサトシ]
株式会社Studio Ousiaソフトウェアエンジニア・東北大学データ駆動科学・AI教育研究センター学術研究員。2021年3月に東北大学大学院情報科学研究科博士後期課程を修了し、博士(情報科学)を取得。博士課程では質問応答の研究に従事。日本語質問応答のコンペティション「AI王」の実行委員。東北大学が公開している日本語BERTの開発者
西川荘介[ニシカワソウスケ]
LINEヤフー株式会社自然言語処理エンジニア。2022年3月に東京大学大学院情報理工学研究科修士課程を修了。現在は情報検索分野での言語処理に取り組む
藤井一喜[フジイカズキ]
東京工業大学情報工学系修士1年・Turing株式会社嘱託研究員。学士、修士課程では大規模モデルの分散並列学習に従事。llm‐up、Swallow Projectにて日本語大規模言語モデルの事前学習を担当
山田康輔[ヤマダコウスケ]
株式会社サイバーエージェントAI Labリサーチサイエンティスト・名古屋大学大学院情報学研究科協力研究員。2024年3月名古屋大学情報学研究科博士後期課程を修了し、博士(情報学)を取得。2024年4月より現職。博士後期課程では自然言語処理、特にフレーム意味論に関する研究に従事(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。
感想・レビュー
※以下の感想・レビューは、株式会社ブックウォーカーの提供する「読書メーター」によるものです。
mim42
しお
ONE_shoT_
まっつん
-
- 和書
- 竹ノ御所鞠子 中公文庫