幾何学・位相幾何学コンパクト入門<br>Introduction to Geometry and Topology〈1st ed. 2018〉

個数:1
紙書籍版価格
¥11,190
  • 電子書籍
  • ポイントキャンペーン

幾何学・位相幾何学コンパクト入門
Introduction to Geometry and Topology〈1st ed. 2018〉

  • 著者名:Ballmann, Werner/Stern, Walker (TRN)
  • 価格 ¥9,204 (本体¥8,368)
  • Birkhäuser(2018/07/18発売)
  • 冬の読書を楽しもう!Kinoppy 電子書籍・電子洋書 全点ポイント25倍キャンペーン(~1/25)
  • ポイント 2,075pt (実際に付与されるポイントはご注文内容確認画面でご確認下さい)
  • 言語:ENG
  • ISBN:9783034809825
  • eISBN:9783034809832

ファイル: /

Description

This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems.

The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula.

The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension.

This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.

Table of Contents

I. First Steps in the Topology.- II. Manifolds.- III. Differential Forms and Cohomology.- IV. Geometry of Submanifolds.- A. Alternating Multilinear Forms.- B. Cochain Complexes.- Bibliography.- Index.

最近チェックした商品