Introduction to Statistics and Data Analysis (7TH)

個数:

Introduction to Statistics and Data Analysis (7TH)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 880 p.
  • 言語 ENG
  • 商品コード 9798214000008
  • DDC分類 519.5

Full Description

Peck and Olsen's INTRODUCTION TO STATISTICS AND DATA ANALYSIS, 7th Edition helps you develop the ability to think statistically through its focus on conceptual understanding, use of real data and interpretation and communication of statistical information. Graphical displays of complex data sets are now common both online and in print media, and it is important to be able to interpret these types of displays. The 7th edition contains a new section on graphical displays of multivariable data, with a focus on extracting information and learning from them.

WebAssign for Statistics accompanies this text. Designed by educators, WebAssign helps you learn not just do homework. WebAssign grants access to the ebook, assessments and analytics to enable you to be a self-sufficient learner and help you succeed in your course.

Contents

1. THE ROLE OF STATISTICS AND THE DATA ANALYSIS PROCESS: Why Study Statistics? The Nature and Role of Variability. Statistics and the Data Analysis Process. Types of Data and Some Simple Graphical Displays.
2. COLLECTING DATA SENSIBLY: Statistical Studies: Observation and Experimentation. Sampling. Simple Comparative Experiments. More on Experimental Design. Interpreting and Communicating the Results of Statistical Analyses. More on Observational Studies: Designing Surveys (online).
3. GRAPHICAL METHODS FOR DESCRIBING DATA: Displaying Categorical Data: Comparative Bar Charts and Pie Charts. Displaying Numerical Data: Stem-and-Leaf Displays. Displaying Numerical Data: Frequency Distributions and Histograms. Displaying Bivariate Numerical Data. Bivariate and Multivariable Graphical Displays. Interpreting and Communicating the Results of Statistical Analyses.
4. NUMERICAL METHODS FOR DESCRIBING DATA: Describing the Center of a Data Set. Describing Variability in a Data Set. Summarizing a Data Set: Boxplots. Interpreting Center and Variability: Chebyshev's Rule, the Empirical Rule, and z Scores. Interpreting and Communicating the Results of Statistical Analyses.
5. SUMMARIZING BIVARIATE DATA: Correlation. Linear Regression: Fitting a Line to Bivariate Data. Assessing the Fit of a Line. Nonlinear Relationships and Transformations. Interpreting and Communicating the Results of Statistical Analyses. Logistic Regression (online).
6. PROBABILITY: Chance Experiments and Events. Definition of Probability. Basic Properties of Probability. Conditional Probability. Independence. Some General Probability Rules. Estimating Probabilities Empirically Using Simulation.
7. RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS: Random Variables. Probability Distributions for Discrete Random Variables. Probability Distributions for Continuous Random Variables. Mean and Standard Deviation of a Random Variable. Binomial and Geometric Distributions. Normal Distributions. Checking for Normality and Normalizing Transformations. Using the Normal Distribution to Approximate a Discrete Distribution.
8. SAMPLING VARIABILITY AND SAMPLING DISTRIBUTIONS: Statistics and Sampling Variability. The Sampling Distribution of a Sample Mean. The Sampling Distribution of a Sample Proportion.
9. ESTIMATION USING A SINGLE SAMPLE: Point Estimation. Large-Sample Confidence Interval for a Population Proportion. Confidence Interval for a Population Mean. Interpreting and Communicating the Results of Statistical Analyses. Bootstrap Confidence Intervals for a Population Proportion (optional). Bootstrap Confidence Intervals for a Population Mean (optional).
10. HYPOTHESIS TESTING USING A SINGLE SAMPLE: Hypotheses and Test Procedures. Errors in Hypothesis Testing. Large-Sample Hypothesis Tests for a Population Proportion. Hypothesis Tests for a Population Mean. Power and Probability of Type II Error. Interpreting and Communicating the Results of Statistical Analyses. Exact Binomial Test and Randomization Test for a Population Proportion (optional). Randomization Test for a Population Mean (optional).
11. COMPARING TWO POPULATIONS OR TREATMENTS: Inferences Concerning the Difference Between Two Population or Treatment Means Using Independent Samples. Inferences Concerning the Difference Between Two Population or Treatment Means Using Paired Samples. Large-Sample Inferences Concerning the Difference Between Two Population or Treatment Proportions. Interpreting and Communicating the Results of Statistical Analyses. Randomization-Based Inference for a Difference in Proportions (optional). Randomization-Based Inference for a Difference in Means (optional).
12. THE ANALYSIS OF CATEGORICAL DATA AND GOODNESS-OF-FIT TESTS: Chi-Square Tests for Univariate Data. Tests for Homogeneity and Independence in a Two-way Table. Interpreting and Communicating the Results of Statistical Analyses.
13. SIMPLE LINEAR REGRESSION AND CORRELATION: INFERENTIAL METHODS: Simple Linear Regression Model. Inferences ab

最近チェックした商品