Advanced Machine Learning with Evolutionary and Metaheuristic Techniques (Computational Intelligence Methods and Applications)

個数:

Advanced Machine Learning with Evolutionary and Metaheuristic Techniques (Computational Intelligence Methods and Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9789819997176

Full Description

This book delves into practical implementation of evolutionary and metaheuristic algorithms to advance the capacity of machine learning. The readers can gain insight into the capabilities of data-driven evolutionary optimization in materials mechanics, and optimize your learning algorithms for maximum efficiency. Or unlock the strategies behind hyperparameter optimization to enhance your transfer learning algorithms, yielding remarkable outcomes. Or embark on an illuminating journey through evolutionary techniques designed for constructing deep-learning frameworks. The book also introduces an intelligent RPL attack detection system tailored for IoT networks. Explore a promising avenue of optimization by fusing Particle Swarm Optimization with Reinforcement Learning.

 

It uncovers the indispensable role of metaheuristics in supervised machine learning algorithms. Ultimately, this book bridges the realms of evolutionary dynamic optimization andmachine learning, paving the way for pioneering innovations in the field.

Contents

Chapter 1. From Evolution to Intelligence: Exploring the Synergy of Optimization and Machine Learning.- Chapter 2. Metaheuristic and Evolutionary Algorithms in Ex-plainable Artificial Intelligence.- Chapter 3. Evolutionary Dynamic Optimization and Machine Learning.- Chapter 4. Evolutionary Techniques in making Efficient Deep-Learning Framework: A Review.- Chapter 5. Integrating Particle Swarm Optimization with Reinforcement Learning: A Promising Approach to Optimization.- Chapter 6. Synergies between Natural Language Processing and Swarm Intelligence Optimization: A Comprehensive Overview.- Chapter 7. Heuristics-based Hyperparameter Tuning for Transfer Learning Algorithms.- Chapter 8. Machine Learning Applications of Evolutionary and Metaheuristic Algorithms.- Chapter 9. Machine Learning Assisted Metaheuristic Based Optimization of Mixed Suspension Mixed Product Removal Process.- Chapter 10. Machine Learning based Intelligent RPL Attack Detection System for IoT Networks.- Chapter 11. Shallow and Deep Evolutionary Neural Networks applications in Solid Mechanics.- Chapter 12. Polymer and nanocomposite Informatics: Recent Applications of Artificial Intelligence and Data Repositories.- Chapter 13. Synergistic combination of machine learning and evolutionary and heuristic algorithms for handling imbalance in biological and biomedical datasets.

最近チェックした商品