塚田真・小林ゆう治・金子博(共)著/Pythonで学ぶ線形代数(テキスト)<br>Linear Algebra with Python : Theory and Applications (Springer Undergraduate Texts in Mathematics and Technology)

個数:

塚田真・小林ゆう治・金子博(共)著/Pythonで学ぶ線形代数(テキスト)
Linear Algebra with Python : Theory and Applications (Springer Undergraduate Texts in Mathematics and Technology)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9789819929504

Full Description

This textbook is for those who want to learn linear algebra from the basics. After a brief mathematical introduction, it provides the standard curriculum of linear algebra based on an abstract linear space. It covers, among other aspects: linear mappings and their matrix representations, basis, and dimension; matrix invariants, inner products, and norms; eigenvalues and eigenvectors; and Jordan normal forms. Detailed and self-contained proofs as well as descriptions are given for all theorems, formulas, and algorithms.

A unified overview of linear structures is presented by developing linear algebra from the perspective of functional analysis. Advanced topics such as function space are taken up, along with Fourier analysis, the Perron-Frobenius theorem, linear differential equations, the state transition matrix and the generalized inverse matrix, singular value decomposition, tensor products, and linear regression models. These all provide a bridge to more specialized theories based on linear algebra in mathematics, physics, engineering, economics, and social sciences.

Python is used throughout the book to explain linear algebra. Learning with Python interactively, readers will naturally become accustomed to Python coding.  By using Python's libraries NumPy, Matplotlib, VPython, and SymPy,  readers can easily perform large-scale matrix calculations, visualization of calculation results, and symbolic computations.  All the codes in this book can be executed on both Windows and macOS and also on Raspberry Pi.

Contents

Mathematics and Python.- Linear Spaces and Linear Mappings.- Basis and Dimension.- Matrices.- Elementary Operations and Matrix Invariants.- Inner Product and Fourier Expansion.- Eigenvalues and Eigenvectors.- Jordan Normal Form and Spectrum.- Dynamical Systems.- Applications and Development of Linear Algebra.

最近チェックした商品