Neural Information Processing : 29th International Conference, ICONIP 2022, Virtual Event, November 22-26, 2022, Proceedings, Part IV (Communications in Computer and Information Science)

個数:

Neural Information Processing : 29th International Conference, ICONIP 2022, Virtual Event, November 22-26, 2022, Proceedings, Part IV (Communications in Computer and Information Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 694 p.
  • 言語 ENG
  • 商品コード 9789819916382

Full Description

The four-volume set CCIS 1791, 1792, 1793 and 1794 constitutes the refereed proceedings of the 29th International Conference on Neural Information Processing, ICONIP 2022, held as a virtual event, November 22-26, 2022.  
The 213 papers presented in the proceedings set were carefully reviewed and selected from 810 submissions. They were organized in topical sections as follows: Theory and Algorithms; Cognitive Neurosciences; Human Centered Computing; and Applications.
The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements.

Contents

​Theory and Algorithms.- Knowledge Transfer from Situation Evaluation to Multi-agent Reinforcement Learning.- Sequential three-way rules class-overlap under-sampling based on fuzzy hierarchical subspace for imbalanced data.- Two-stage Multilayer Perceptron Hawkes Process.- The Context Hierarchical Contrastive Learning for Time Series in Frequency Domain.- Hawkes Process via Graph Contrastive Discriminant representation Learning and Transformer capturing long-term dependencies.- A Temporal Consistency Enhancement Algorithm Based On Pixel Flicker Correction.- Data representation and clustering with double low-rank constraints.- RoMA: a Method for Neural Network Robustness Measurement and Assessment.- Independent Relationship Detection for Real-Time Scene Graph Generation.- A multi-label feature selection method based on feature graph with ridge regression and eigenvector centrality.- O3GPT: A Guidance-Oriented Periodic Testing Framework with Online Learning, Online Testing,and Online Feedback.- AFFSRN: Attention-Based Feature Fusion Super-Resolution Network.- Temporal-Sequential Learning with Columnar-Structured Spiking Neural Networks.- Graph Attention Transformer Network for Robust Visual Tracking.- GCL-KGE:Graph Contrastive Learning for Knowledge Graph Embedding.- Towards a Unified Benchmark for Reinforcement Learning in Sparse Reward Environments.- Effect of Logistic Activation Function and Multiplicative Input Noise on DNN-kWTA model.- A High-Speed SSVEP-Based Speller Using Continuous Spelling Method.- AAT: Non-Local Networks for Sim-to-Real Adversarial Augmentation Transfer.- Aggregating Intra-class and Inter-class information for Multi-label Text Classification.- Fast estimation of multidimensional regression functions by the Parzen kernel-based method.- ReGAE: Graph autoencoder based on recursive neural networks.- Efficient Uncertainty Quantification for Under-constraint Prediction following Learning using MCMC.- SMART: A Robustness Evaluation Framework for Neural Networks.- Time-aware Quaternion Convolutional Network for Temporal Knowledge Graph Reasoning.- SumBART - An improved BART model for abstractive text summarization.- Saliency-Guided Learned Image Compression for Object Detection.- Multi-Label Learning with Data Self-Augmentation.- MnRec: A News Recommendation Fusion Model Combining Multi-granularity Information.- Infinite Label Selection Method for Mutil-label Classification.- Simultaneous Perturbation Method for Multi-Task Weight Optimization in One-Shot Meta-Learning.- Searching for Textual Adversarial Examples with Learned Strategy.- Multivariate Time Series Retrieval with Binary Coding from Transformer. -Learning TSP Combinatorial Search and Optimization with Heuristic Search.- A Joint Learning Model for Open Set Recognition with Post-processing.- Cross-Layer Fusion for Feature Distillation.- MCHPT: A Weakly Supervise Based Merchant Pre-trained Model.- Progressive Latent Replay for efficient Generative Rehearsal.- Generalization Bounds for Set-to-Set Matching with Negative Sampling.- ADA: An Attention-Based Data Augmentation Approach to Handle Imbalanced Textual Datasets.- Countering the Anti-detection Adversarial Attacks.- Evolving Temporal Knowledge Graphs by Iterative Spatio-Temporal Walks.- Improving Knowledge Graph Embedding Using Dynamic Aggregation of Neighbor Information.- Generative Generalized Zero-Shot Learning based on Auxiliary-Features.- Learning Stable Representations with Progressive Autoencoder (PAE).- Effect of Image Down-sampling on Detection of Adversarial Examples .- Boosting the Robustness of Neural Networks with M-PGD.- StatMix: Data augmentation method that relies on image statistics in federated learning.- Classification by Components Including Chow's Reject Option. -Community discovery algorithm based on improved deep sparse autoencoder.- Fairly Constricted Multi-Objective Particle Swarm Optimization.- Argument Classification with BERT plus Contextual, Structural andSyntactic Features as Text.- Variance Reduction for Deep Q-Learning using Stochastic Recursive Gradient.- Optimizing Knowledge Distillation Via Shallow Texture Knowledge Transfer.- Unsupervised Domain Adaptation Supplemented with Generated Images.- MAR2MIX: A Novel Model for Dynamic Problem in Multi-Agent Reinforcement Learning.- Adversarial Training with Knowledge Distillation Considering Intermediate Representations in CNNs.- Deep Contrastive Multi-view Subspace Clustering.