Equivariant and Coordinate Independent Convolutional Networks: A Gauge Field Theory of Neural Networks (Progress in Data Science)

個数:
  • 予約

Equivariant and Coordinate Independent Convolutional Networks: A Gauge Field Theory of Neural Networks (Progress in Data Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 592 p.
  • 言語 ENG
  • 商品コード 9789819806621

Full Description

What is the appropriate geometric structure for neural networks that process spatial signals on Euclidean spaces or more general manifolds? This question takes us on a journey which leads to a gauge field theory of convolutional networks.Feature vector fields: The spatial signals we are interested in are fields of feature vectors. Feature fields allow to describe data like images, audio, videos, point clouds, or tensor fields, such as fluid flows and electromagnetic fields.Equivariant networks commute with actions of some symmetry group on their feature spaces. The relevant group actions in this work are geometric transformations of feature fields, like translations, rotations, or reflections of images. Equivariant models generalize everything they learn over the considered group of transformations. This property makes them significantly more data efficient, interpretable, and robust in comparison to non-equivariant models.Convolutional Neural Networks (CNNs) are the most common network architecture for processing feature fields. Conventional CNNs operate on Euclidean spaces and are translation equivariant, i.e. position independent. This work explains how to extend CNNs to be equivariant under more general symmetries of space.Coordinate independence: Manifolds are in general not equipped with a canonical choice of coordinates. Feature fields and neural network layers are hence required to be coordinate independent, that is, expressible relative to different frames of reference. The ambiguity of local frames represents the gauge freedom of our neural field theory. We show that the demand for coordinate independence requires CNNs to be equivariant under local gauge transformations.To offer an easy entry, the first part of this work focuses on the representation theory of equivariant convolutional networks on Euclidean spaces. The insights gained in the Euclidean setting are subsequently leveraged to develop the full gauge theory of coordinate independent CNNs on Riemannian manifolds. In the last part, we turn to a discussion of practical applications on specific manifolds. A comprehensive literature review demonstrates the generality of our theory by showing for more than 100 models from the literature how they can be understood as specific instantiations of 'Equivariant and Coordinate Independent CNNs'.

最近チェックした商品