Mastering Machine Learning: From Basics to Advanced (Transactions on Computer Systems and Networks)

個数:

Mastering Machine Learning: From Basics to Advanced (Transactions on Computer Systems and Networks)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • ページ数 239 p.
  • 言語 ENG
  • 商品コード 9789819799138

Full Description

This book covers all aspects of machine learning (ML) from concepts and math to ML programming. ML concepts and the math associated with ML are written from an application perspective, rather than from a theoretical perspective. The book presents concepts and algorithms precisely as they are used in real-world applications, ensuring a seamless and practical understanding with no gap between theory and practice.

In a distinctive approach, the book's content is complemented by video lectures whose details can be found inside the book. This innovative approach offers readers a multimedia learning experience, accommodating different learning preferences, and reinforcing the material through visual and auditory means. If you are new to Artificial Intelligence and Machine Learning, this could be the first book you read and the first video course you take.

Contents

Chapter 1: Introduction.- Chapter 2: Python Programming Using Google Cloud (COLAB).- Chapter 3: Introduction to Colab: Google Cloud Development Environment.- Chapter 4: Getting started with python.-Chapter 5: Conditions.- Chapter 6: Loops.- Chapter 7: Functions.- Chapter 8: Arrays.- Chapter 9: NumPy.-Chapter 10: PANDAS.- Chapter 11: Data Visualization using Matplotlib.- Chapter 12: Dependent Vs. Independent Variables.- Chapter 13: Types of Data.- Chapter 14: Population Vs. Sample.- Chapter 15: Hypothesis Testing.- Chapter 16: Machine Learning Concepts .- Chapter 17: Measuring Accuracy in Algorithms.- Chapter 18: Understanding Regression Concepts.- Chapter 19: Simple Linear Regression (Programming).- Chapter 20: Advanced Data Visualization for Regression.- Chapter 21: Multiple Linear Regression (Programming).- Chapter 22: Gradient Descent.- Chapter 23: Logistic Regression (Programming).- Chapter 24: Unsupervised Learning - Concepts & Programming.- Chapter 25: Exploratory Data Analysis.

最近チェックした商品