Web and Big Data : 8th International Joint Conference, APWeb-WAIM 2024, Jinhua, China, August 30-September 1, 2024, Proceedings, Part II (Lecture Notes in Computer Science) (2024)

個数:

Web and Big Data : 8th International Joint Conference, APWeb-WAIM 2024, Jinhua, China, August 30-September 1, 2024, Proceedings, Part II (Lecture Notes in Computer Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 490 p.
  • 言語 ENG
  • 商品コード 9789819772346

Full Description

The five-volume set LNCS 14961, 14962, 14963, 14964 and 14965 constitutes the refereed proceedings of the 8th International Joint Conference on Web and Big Data, APWeb-WAIM 2024, held in Jinhua, China, during August 30-September 1, 2024.

The 171 full papers presented in these proceedings were carefully reviewed and selected from 558 submissions.

The papers are organized in the following topical sections:

Part I: Natural language processing, Generative AI and LLM, Computer Vision and Recommender System.

Part II: Recommender System, Knowledge Graph and Spatial and Temporal Data.

Part III: Spatial and Temporal Data, Graph Neural Network, Graph Mining and Database System and Query Optimization.

Part IV: Database System and Query Optimization, Federated and Privacy-Preserving Learning, Network, Blockchain and Edge computing, Anomaly Detection and Security

Part V: Anomaly Detection and Security, Information Retrieval, Machine Learning, Demonstration Paper and Industry Paper.

Contents

.- Recommender System.

.- Hierarchical Review-based Recommendation with Contrastive Collaboration.

.- Adaptive Augmentation and Neighbor Contrastive Learning for Multi-Behavior Recommendation.

.- Automated Modeling of Influence Diversity with Graph Convolutional Network for Social Recommendation.

.- Contrastive Generator Generative Adversarial Networks for Sequential Recommendation.

.- Distribution-aware Diversification for Personalized Re-ranking in Recommendation.

.- KMIC: A Knowledge-aware Recommendation with Multivariate Intentions Contrastive Learning.

.- Logic Preference Fusion Reasoning on Recommendation.

.- MHGNN: Hybrid Graph Neural Network with Mixers for Multi-interest Session-aware Recommendation.

.- Mixed Augmentation Contrastive Learning for Graph Recommendation System.

.- Noise-Resistant Graph Neural Networks for Session-based Recommendation.

.- S2DNMF: A Self-supervised Deep Nonnegative Matrix Factorization Recommendation Model Incorporating Deep Latent Features of Network Structure.

.- Self-Filtering Residual Attention Network based on Multipair Information Fusion for Session-Based Recommendations.

.- TransRec: Learning Transferable Recommendation from Mixture-of-Modality Feedback.

.- VM-Rec: A Variational Mapping Approach for Cold-start User Recommendation.

.- Knowledge Graph.

.- Matching Tabular Data to Knowledge Graph based on Multi-level Scoring Filters for Table Entity Disambiguation.

.- Complex Knowledge Base Question Answering via Structure and Content Dual-driven Method.

.- EvoREG: Evolutional Modeling with Relation-Entity Dual-Guidance for Temporal Knowledge Graph Reasoning.

.- Federated Knowledge Graph Embedding Unlearning via Diffusion Model.

.- Functional Knowledge Graph Towards Knowledge Application and Data Management for General Users.

.- Hospital Outpatient Guidance System Based On Knowledge Graph.

.- TOP: Taxi Destination Prediction Based on Trajectory Knowledge Graph.

.- Type-based Neighborhood Aggregation for Knowledge Graph Alignment.

.- An Aggregation Procedure Enhanced Mechanism for GCN-based Knowledge Graph Completion Model by Leveraging Condensed Sampling and Attention Optimization.

.- Spatial and Temporal Data.

.- Capturing Fine and Coarse Grained User Preferences with Dual-Transformer for Next POI Recommendation.

.- Enhancing Spatio-Temporal Semantics with Contrastive Learning for Next POI Recommendation.

.- Distinguish the Indistinguishable: Spatial Personalized Transformer for Traffic Flow Forecast.

.- Meeting Pattern Detection from Trajectories in Road Network.

.- Speed Prediction of Multiple Traffic Scenarios with Local Fluctuation.

.- ST-TPFL: Towards Spatio-Temporal Traffic Flow Prediction Based on Topology Protected Federated Learning.

.- A Context-aware Distance Analysis Approach for Time Series.

.- Dual-view Stack State Learning Network for Attribute-based Container Location Assignment.

.- Efficient Coverage Query over Transition Trajectories.

最近チェックした商品