Advances in Swarm Intelligence : 15th International Conference on Swarm Intelligence, ICSI 2024, Xining, China, August 23-26, 2024, Proceedings, Part I (Lecture Notes in Computer Science)

個数:

Advances in Swarm Intelligence : 15th International Conference on Swarm Intelligence, ICSI 2024, Xining, China, August 23-26, 2024, Proceedings, Part I (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 470 p.
  • 言語 ENG
  • 商品コード 9789819771806

Full Description

This two-volume set LNCS 14788 and 14789 constitutes the refereed post-conference proceedings of the 15th International Conference on Advances in Swarm Intelligence, ICSI 2024, held in Xining, China, during August 23-26, 2024.

The 74 revised full papers presented in these proceedings were carefully reviewed and selected from 156 submissions. The papers are organized in the following topical sections:

Part I - Particle swarm optimization; Swarm intelligence computing; Differential evolution; Evolutionary algorithms; Multi-agent reinforcement learning & Multi-objective optimization.

Part II - Route planning problem; Machine learning; Detection and prediction; Classification; Edge computing; Modeling and optimization & Analysis of review.

Contents

.- Particle Swarm Optimization.

.- Set-Based Particle Swarm Optimization for the Multi-Objective Multi-Dimensional Knapsack Problem.

.- Proposal of a Memory-Based Ensemble Particle Swarm Optimizer.

.- A Tri-swarm Particle Swarm Optimization Considering the Cooperation and the Fitness Value.

.- A Modified Variable Velocity Strategy Particle Swarm Optimization Algorithm for Multi-objective Feature Selection.

.- Multi-Strategy Enhanced Particle Swarm Optimization Algorithm for Elevator Group Scheduling.

.- A Self-Learning Particle Swarm Optimization Algorithm for Dynamic Job Shop Scheduling Problem with New Jobs Insertion.

.- Convolutional Neural Network Architecture Design Using An Improved Surrogate-assisted Particle Swarm Optimization Algorithm.

.- Swarm Intelligence Computing.

.- Cooperative Search and Rescue Target Assignment Based on Improved Ant Colony Algorithm.

.- A Metabolic Pathway Design Method based on surrogate-assisted Fireworks Algorithm.

.- Circle Chaotic Search-Based Butterfly Optimization Algorithm.

.- An Adaptive Bacterial Foraging Optimization Algorithm Based on Chaos-Enhanced Non-Elite Reverse Learning.

.- Enhanced Bacterial Foraging Optimization with Dynamic Disturbance Learning and Bilayer Nested Structure.

.- Improved Kepler Optimization Algorithm Based on Mixed Strategy.

.- Harmony Search with Dynamic Dimensional-reduction Adjustment Strategy for Large-scale Absolute Value Equation.

.- Massive Conscious Neighborhood-based Crow Search Algorithm for the Pseudo-Coloring Problem.

.- Multi-Strategy Integration Model Based on Black-Winged Kite Algorithm and Artificial Rabbit Optimization.

.- Differential Evolution.

.- Fractional Order Differential Evolution to Solve Parameter Estimation Problem of Solar Photovoltaic Models.

.- Enhanced Dingo Optimization Algorithm Based on Differential Evolution and Chaotic Mapping for Engineering Optimization.

.- Hierarchical Adaptive Differential Evolution with Local Search for Extreme Learning Machine.

.- Metaheuristic Algorithms for Enhancing Multicepstral Representation in Voice Spoofing Detection: An Experimental Approach.

.- Evolutionary Algorithms.

.- A Multi-modal Multi-objective Evolutionary Algorithm Based on Multi-criteria Grouping.

.- Constructing Robust and Influential Networks against Cascading Failures via a Multi-objective Evolutionary Algorithm.

.- Fault Reconfiguration of Distribution Networks Using an Enhanced Multimodal Multi-objective Evolutionary Algorithm.

.- Attacking Evolutionary Algorithms via SparseEA.

.- Evolutionary Computation with Distance-based Pretreatment for Multimodal Problems.

.- Multi-Agent Reinforcement Learning.

.- Stock Price Prediction Model Based on Blending Model Improved with Sentiment Factors and Double Q-learning.

.- Stock price prediction mdoel integrating an improved NSGA-III with Random Forest.

.- Unveiling the Decision-Making Process in Reinforcement Learning with Genetic Programming.

.- Diversity Improved Genetic Algorithm for Weapon Target Assignment.

.- An Investigation of Underground Rescue Scheduling with Multi-Agent Reinforcement Learning.

.- Distributed Advantage-based Weights Reshaping Algorithm with Sparse Reward.

.- Multi-objective Optimization.

.- A Joint Prediction Strategy based on Multiple Feature Points for Dynamic Multi-objective Optimization.

.- An Expensive Multi-objective Optimization Algorithm Based on Regional Density Ratio.

.- Robust Lightweight Neural Network Architecture Search-based on Multi-objective Particle Swarm Optimization.

.- Surrogate-Assisted Multi-Objective Evolutionary Algorithm Guided by Multi-Reference Points.

.- Multi-objective Path planning of Multiple Unmanned Air Vehicles Using the CCMO Algorithm.

.- Multi-UAV Collaborative Detection Based on Reinforcement Learning.

最近チェックした商品