可換環と加群の基礎(第2版)<br>Foundations of Commutative Rings and Their Modules (Algebra and Applications) (2ND)

個数:

可換環と加群の基礎(第2版)
Foundations of Commutative Rings and Their Modules (Algebra and Applications) (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 800 p.
  • 言語 ENG
  • 商品コード 9789819752836

Full Description

This book provides an introduction to the foundations and recent developments in commutative algebra. A look at the contents of the first five chapters shows that the topics covered are those usually found in any textbook on commutative algebra. However, this book differs significantly from most commutative algebra textbooks: namely in its treatment of the Dedekind-Mertens formula, the (small) finitistic dimension of a ring, Gorenstein rings, valuation overrings, the valuative dimension, and the Nagata rings. Chapter 6 goes on to present w-modules over commutative rings, as they are most commonly used in torsion theory and multiplicative ideal theory. Chapter 7 deals with multiplicative ideal theory over integral domains. Chapter 8 collects various results of pullbacks, especially Milnor squares and D + M constructions, which are probably the most important example-generating machines. In Chapter 9, coherent rings of finite weak global dimensions are probed, and the local ring of weak global dimension two is elaborated by combining homological tricks and methods of star operation theory. Chapter 10 is devoted to the Grothendieck group of a commutative ring. In particular, the Bass-Quillen problem is discussed. Finally, Chapter 11 introduces relative homological algebra, especially where the related notions of integral domains appearing in classical ideal theory are defined and studied using the class of Gorenstein projective modules. In Chapter 12, in this new edition, properties of cotorsion theories are introduced and show, for any cotorsion pair, how to construct their homology theory. Each section of the book is followed by a selection of exercises of varying difficulty. This book  appeals to a wide readership, from graduate students to academic researchers interested in studying commutative algebra.

Contents

Basic Theory of Rings and Modules.- Several Classical Module Classes in the Module Category.- Homological Methods.- Basic Theory of Noetherian Rings.- Extensions of Rings.- w-Modules over Rings.- Multiplicative Ideal Theory over Integral Domains.- Structural Theory of Milnor Squares.- Coherent Rings with Finite Weak Global Dimension.- Grothendieck Groups of Rings.- Relative Homological Algebra.- Cotorsion Theory.

最近チェックした商品