Data Science: Foundations and Applications : 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2025, Sydney, Australia, June 10-13, 2025, Proceedings, Part VI (Lecture Notes in Computer Science)

個数:
  • 予約

Data Science: Foundations and Applications : 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2025, Sydney, Australia, June 10-13, 2025, Proceedings, Part VI (Lecture Notes in Computer Science)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 444 p.
  • 言語 ENG
  • 商品コード 9789819682942

Full Description

The two-volume set LNAI 15875 + 15876 constitutes the proceedings of the 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2025 Special Session, held in Sydney, NSW, Australia, during June 10-13, 2025.

The 68 full papers included in this set were carefully reviewed and selected from 696 submissions. They were organized in topical sections as follows: survey track; machine learning; trustworthiness; learning on complex data; graph mining; machine learning applications; representation learning; scientific/business data analysis; and special track on large language models.

Contents

.- Survey Track.
.- Large Language Models for Cybersecurity Education: A Survey of Current Practices and Future Directions.
.- A Comprehensive Survey on Deep Learning Solutions for 3D Flood Mapping.
.- A Survey of Foundation Models for Environmental Science.
.- A Survey on Efficient Graph Reachability Queries.
.- Machine Learning.
.- Disentangled Representation Learning for Geospatial-temporal Data Modeling.
.- Treatment Effect Estimation for Graph-Structured Targets.
.- Dynamic DropConnect: Enhancing Neural Network Robustness through Adaptive Edge Dropping Strategies.
.- The Brownian Integral Kernel: A New Kernel for Modeling Integrated Brownian Motions.
.- Fed-ARIMA-OPARBFN: An Ensemble Model for Cross-Domain Crop Yield Time Series Prediction Based on Federated Learning.
.- S-CPD: Topological Smoothing-Based Change Point Detection.
.- VDASI: VAE-Enhanced Degradation-Aware System Identification Using Constrained Latent Spaces.
.- Disentangled Mode-Specific Representations for Tensor Time Series via Contrastive Learning.
.- PFformer: A Position-Free Transformer Variant for Extreme-Adaptive Multivariate Time Series Forecasting.
.- Advancing Long-Term High-Frequency Dissolved Oxygen Forecasting for Australian Rivers.
.- CNO-former: Chaotic Neural Oscillatory Transformer for Social Media Text Generation.
.- Multilingual Non-Factoid Question Answering with Answer Paragraph Selection
.- Turning Uncertainty to Information by Intervals in Ensemble Classifiers.
.- Determining the Need for Multi-Label Classifiers by Measuring Unexplained Covariance.
.- Evaluating Generative Vehicle Trajectory Models for Traffic Intersection Dynamics.
.- Trustworthiness.
.- Inversion Triplet - A Contrastive Backdoor Mitigation Method for Self-Supervised Vision Encoders.
.- Beyond Uniformity: Robust Backdoor Attacks on Deep Neural Networks with Trigger Selection.
.- Defence Against Multi-target Multi-trigger Backdoor Attack.
.- How to Backdoor Consistency Models?.
.- Multi-granularity Policy Explanation of Deep Reinforcement Learning Based on Saliency Map Clustering.
.- FACROC: A Fairness Measure for Fair Clustering Through ROC Curves.
.- Learning on Complex Data.
.- Action Sequence Analysis Using Temporal Commonsense Knowledge.
.- Foundation Model for Lossy Compression of Spatiotemporal Scientific Data.
.- CANTER: A Novel Causal Model for Tourism Demand Forecasting.
.- Time-Aware Complex Attention Space for Temporal Knowledge Graph Completion.
.- Adaptive Extraction of Variable-Length Subsequence Patterns in Noisy Time Series.
.- Hunting Inside N-Quantiles of Outliers (Hino).
.- Fast Approximation Algorithm for Euclidean Minimum Spanning Tree Building in High Dimensions.
.- ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing Forecasting Models in Badminton.
.- Offline Map Matching Based on Localization Error Distribution Modeling.

最近チェックした商品