Hands-on Pattern Mining : Theory and Examples with PAMI, Sklearn, Keras, and TensorFlow

個数:
  • 予約

Hands-on Pattern Mining : Theory and Examples with PAMI, Sklearn, Keras, and TensorFlow

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 196 p.
  • 言語 ENG
  • 商品コード 9789819667901

Full Description

This book introduces pattern mining by presenting various pattern mining techniques and giving hands-on experience with each technique. Pattern mining is a popular data mining technique with many real-world applications, and involves discovering all user interest-based patterns that may exist in a database. Several models and numerous algorithms were described in the literature to find these patterns in binary databases, quantitative databases, uncertain databases, and streams. Since the lack of a Python toolkit containing these algorithms has limited the wide adaptability of pattern-mining techniques, the author developed Pattern Mining (PAMI) Python library, which currently contains 80+ algorithms to discover useful patterns in transactional databases, temporal databases, quantitative databases, and graphs.

The book consists of three main parts:

· Introduction: The first chapter introduces big data, types of learning techniques, and the importance of pattern mining. The second chapter introduces the PAMI library, its organizational structure, installation, and usage.

· Pattern mining algorithms and examples: The following chapters present the state-of-the-art techniques for discovering user interest-based patterns in (1) transactional databases, (2) temporal databases, (3) quantitative databases, (4) uncertain databases, (5) sequential databases, and (6) graphs.

· Applications: The book concludes with several applications, where the predicted knowledge using TensorFlow and PyTorch was transformed into a database to discover future trends or patterns.

Contents

Part I Fundamentals 1 Getting Started with PAMI: Introduction, Maintenance, and Usage.- 2 Handling Big Data: Classification, Storage, and Processing Techniques.- 3 Transactional Databases: Representation, Creation, and Statistics.- 4 Pattern Discovery in Transactional Databases.- 5 Temporal Databases: Representation, Creation, and Statistics.- 6 Pattern Discovery in Temporal Databases.- 7 Spatial Databases: Representation, Creation, and Statistics.- 8 Pattern Discovery in Spatial Databases.- 9 Utility Databases: Representation, Creation, and Statistics.- 10 Pattern Discovery in Utility Databases.- 11 Sequence Databases: Representation, Creation, and Statistics.- 12 Pattern Discovery in Sequence Databases.- Part II Advanced Concepts 13 Mining Symbolic Sequences.- 14 Pattern Discovery in Fuzzy Databases.- 15 Knowledge Discovery in Uncertain Databases.- 16 Finding Useful Patterns in Graph Databases.- Part III Applications 17 Discovering Air Pollution Patterns through the KDD Process.- 18 Discovering Futuristic Pollution Patterns Using Forecasting and Pattern Mining.

最近チェックした商品