Neural Information Processing : 31st International Conference, ICONIP 2024, Auckland, New Zealand, December 2-6, 2024, Proceedings, Part VI (Lecture Notes in Computer Science)

個数:
電子版価格
¥12,510
  • 電子版あり

Neural Information Processing : 31st International Conference, ICONIP 2024, Auckland, New Zealand, December 2-6, 2024, Proceedings, Part VI (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 386 p.
  • 言語 ENG
  • 商品コード 9789819665907

Full Description

The eleven-volume set LNCS 15286-15296 constitutes the refereed proceedings of the 31st International Conference on Neural Information Processing, ICONIP 2024, held in Auckland, New Zealand, in December 2024.
The 318 regular papers presented in the proceedings set were carefully reviewed and selected from 1301 submissions. They focus on four main areas, namely: theory and algorithms; cognitive neurosciences; human-centered computing; and applications.

Contents

Ranking Region-based OD-Betweenness Centrality in Road Networks.- Mining Fuzzy Partial Periodic Frequent Patterns in Very Large Temporal Databases.- Style Miner: Find Significant and Stable Factors in Time Series with Constrained Reinforcement Learning.- Ensemble Learning Prediction Based on Comprehensive Factors for Portfolio Optimization.- TDAT: A Real-time Two-stage DDoS Attacks Detector Based on Anomaly Transformer.- Unified Mask Graph Modeling for Incomplete Tabular Learning.- Learning Granularity Representation for Temporal Knowledge Graph  Completion.- MPLinear: Multiscale Patch Linear Model for Long-Term Time Series Forecasting.- Residual Broad Learning System with Variational Autoencoder for Robust Regression.- STEncoder: Robust Decomposition for Time Series Forecasting.- Fine-Grained Common Knowledge Learning for Domain Adaptive Few-shot Relation Extraction.- DMGCL: Denoising Multi-View Graph Contrastive Learning for Robust Recommendation.- STMGFN: Spatio-Temporal Multi-Graph Fusion Network for Traffic Flow Prediction.- Refined Sentiment Analysis Using POS Features and LDA: Mitigating Polysemy and Sparsity with BERT Contextual Embedding.- Table-Based Two-Stage Relation Classification Method for Trigger-Free Document-Level Event Extraction.- CDIG: Customizable Dual Interaction Graph module for News Recommendation.- VEBiLSTM: A Neural Network for Field-road Classification using Enhanced Spatiotemporal Features.- Seq-LSTM-Conv: Multi-sequence Aggregated Forecasting Using LSTM and Convolutional Neural Networks.- Test-time Adaptation with Angular Distance-based Prediction.- FedAKD:Heterogeneous Graph Federated Learning Framework based on Data Augmentation and Knowledge Distillation.- TSIV: A Two-Stage Approach for Identifying Encrypted Video Traffic in Unstable Network.- Who is the Writer?Identifying the Generative Model by Writing Style.- RAEDiff: Diffusion Models Enable Self-Generation and Self-Recovery of Reversible Adversarial Examples.- OKey: Towards More Controllable, Secure and Robust Diffusion Model Image Steganography Using Optimized Key.- Automated Mining of Multi-Dimensional Information from APT Malware for Effective Feature Analysis and Threat Actor Attribution.- PaPa: Propagation Pattern Enhanced Prompt Learning for Zero-shot Rumor Detection.

最近チェックした商品