Neural Information Processing : 31st International Conference, ICONIP 2024, Auckland, New Zealand, December 2-6, 2024, Proceedings, Part II (Lecture Notes in Computer Science)

個数:

Neural Information Processing : 31st International Conference, ICONIP 2024, Auckland, New Zealand, December 2-6, 2024, Proceedings, Part II (Lecture Notes in Computer Science)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 436 p.
  • 言語 ENG
  • 商品コード 9789819665785

Full Description

The eleven-volume set LNCS 15286-15296 constitutes the refereed proceedings of the 31st International Conference on Neural Information Processing, ICONIP 2024, held in Auckland, New Zealand, in December 2024.
The 318 regular papers presented in the proceedings set were carefully reviewed and selected from 1301 submissions. They focus on four main areas, namely: theory and algorithms; cognitive neurosciences; human-centered computing; and applications.

Contents

Network structure and recurrent dynamics achieved by maximizing information transfer and minimizing maintenance costs of the network.- Outlier-Robust Range-Based Method for Estimating the Location and Velocity of a Moving Source Using Lagrange Programming Neural Network.- Spatial Analysis Techniques in Recognition and Localization of Mouse Neuronal Activity.- ScaleMixer: A Multi-Scale MLP-Mixer Model for Long-Term Time Series Forecasting.- Application of Pseudometric Functions in Clustering and a Novel Similarity Measure Based on Path Information Discrepancy.- USAM-Net: A U-Net based network for improved stereo correspondence and scene depth estimation using features from a pre-trained image segmentation network.- TaW-PeRCNN:Time-adaptive Weights Physics-encoded Recurrent Convolutional Neural Network for Solving Partial Differential Equations.- An Explainable Error Detection Approach for Machine Learning.- T-GET3D: A Generative Model of High-Quality 3D Textured Shapes Guided by Texts.- Conformal Adversarial Generative Ensemble.- Virtual Command Allocation: Enhancing Hexapod Robot Locomotion through Goal-Conditioned Reinforcement Learning.- Adaptive Retrieval-based Gradient Planning for Offine Multi-context Model-based Optimization.- RBHAR: Role-Based Heterogeneous Action Representation in Multi-Agent Reinforcement Learning.- Deep mixtures of variational autoencoders model for representation learning and clustering tasks.- TempoKGAT: A Novel Graph Attention Network Approach for Temporal Graph Analysis.- Direct Correlational Spike-Timing-Dependent Plasticity Learning Applied to Classification Tasks.- Wave-RVFL: A Randomized Neural Network Based on Wave Loss Function.- Dual Cross Fusion Deep-unfolding Transformer for Hyperspectral Image Reconstruction.- A weight averaging neural network for semi-supervised data stream learning.- obust Noise Tolerant Algorithm for Randomized Neural Network.- Tackling Periodic Distribution Shifts in Federated Learning with Half-cycle Knowledge Distillation.- Multi-Scale Attention Convolutional Network and Reinforcement Learning for Flexible Job Shop Scheduling.- Temporal State Prediction and Sequence Recovery for Multi-Agent Reinforcement Learning.- Data Augmentation with Variational Autoencoder for Imbalanced Dataset.- Performance Analysis of Quantum-Enhanced Kernel Classifiers Based on Feature Maps: A Case Study on EEG-BCI Data.- Certified Patch Defense via Dual Mask-Preservation Prediction.- Proximal Point Method for Online Saddle Point Problem.- Fast Preserving Local Distances and Topology in Auto-Encoders.- Neural Collapse Inspired Regularization for Deep Graph Neural Networks.

最近チェックした商品