Proceedings of the 11th Conference on Sound and Music Technology : Revised Selected Papers from CSMT 2024 (Lecture Notes in Electrical Engineering)

個数:
  • 予約

Proceedings of the 11th Conference on Sound and Music Technology : Revised Selected Papers from CSMT 2024 (Lecture Notes in Electrical Engineering)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 99 p.
  • 言語 ENG
  • 商品コード 9789819647828

Full Description

This book presents selected papers at the 11th Conference on Sound and Music Technology (CSMT) held in October 2024, Wuhan, China. CSMT is a multidisciplinary conference focusing on audio processing and understanding with bias on music and acoustic signals. The primary aim of the book is to promote the collaboration between art society and technical society in China. In this book, the paper included covers a wide range topic from speech, signal processing, music understanding, machine learning, and signal processing for advanced medical diagnosis and treatment applications, which demonstrates the target of CSMT merging arts and science research together. Its content caters to scholars, researchers, engineers, artists, and education practitioners not only from academia but also industry, who are interested in audio/acoustics analysis signal processing, music, sound, and artificial intelligence (AI).

Contents

1. Meta-Learning for Domain Generalization in Anomalous Sound Detection.- 2. Online Joint Beat and Downbeat Tracking with Time Series Forecasting Model.- 3. Advancing Metadata-Convolutional Neural Networks with Multi-Supervised Contrastive Learning and Metadata Insights for Respiratory Sound Analysis.- 4. Automatic Performative Transcription of Guitar Music Based on Multimodal Network.- 5. A Framework for the Digital Representation and Rendering of Chinese Jianpu Notation for Constructing a Synthetic OMR Dataset.- 6. Accent Recognition with Auxiliary Task and Contrastive Learning.- 7. Effective Denoising in Music-Present Pubs with Efficient Channel Attention.- 7. Semi-Supervised Self-Learning Enhanced Music Emotion Recognition.