Maximal Planar Graph Theory and the Four-Color Conjecture

個数:

Maximal Planar Graph Theory and the Four-Color Conjecture

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 350 p.
  • 言語 ENG
  • 商品コード 9789819647446

Full Description

This open access book integrates foundational principles with advanced methodologies concerning maximal planar graphs. It offers readers an exceptional examination of graph structures, chromatic polynomials, and the construction and proof techniques of the Four-Color Conjecture. It is tailored for researchers, educators, and students involved in graph theory, combinatorics, and computational mathematics. 

The book consists of nine meticulously developed chapters. It starts with fundamental concepts in graph theory and then advances to pioneering computational proofs and recursive formulas of the chromatic number related to maximal planar graphs. Notable features include comprehensive discharging techniques, innovative approaches for constructing graphs of various orders, and groundbreaking conjectures concerning tree-colorability and unique four-colorability. The concluding chapter introduces Kempe's changes, offering new insights into the dynamics of graph coloring.

Whether you are an academic enhancing your theoretical knowledge or a student searching for clear explanations for complex concepts, this book provides essential tools for navigating and addressing some of the most intricate challenges in graph theory. Its rigorous analysis and computational techniques equip readers with the necessary skills to engage deeply with maximal planar graph problems, making it an indispensable resource for advancing research and practical applications.

No prior knowledge is necessary; however, a foundational understanding of graph theory is advised. This opportunity presents a chance to explore innovative perspectives and methodologies that expand the horizons of mathematical inquiry and proof development.

Contents

Chapter 1 Graph Theory Fundamentals.- Chapter 2 Discharging and Structure of Maximal Planar Graphs.- Chapter 3 Computer-Based Proofs of Four Color Conjecture.- Chapter 4 Construction of Maximal Planar Graphs with the same order.- Chapter 5 Construction of Maximal Planar Graphs with the different order.-  Chapter 6 Generating System of Maximal Planar Graphs.- Chapter 7 Recursion Formulae of Chromatic Polynomial and Four-Color Conjecture.- Chapter 8 Purely Tree-colorable and Uniquely 4-Colorable Maximal Planar Graph Conjectures.- Chapter 9 Kempe Change.

最近チェックした商品