データサイエンス:Rを用いて経済、空間、多次元データを扱う基礎と実地体験<br>Data Science: Foundations and Hands-on Experience : Handling Economic, Spatial, and Multidimensional Data with R

個数:

データサイエンス:Rを用いて経済、空間、多次元データを扱う基礎と実地体験
Data Science: Foundations and Hands-on Experience : Handling Economic, Spatial, and Multidimensional Data with R

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 350 p.
  • 言語 ENG
  • 商品コード 9789819646821

Full Description

This book will take readers from foundational concepts to practical applications, enabling them to transform raw data into meaningful insights. It covers key skills such as data collection, cleaning, organization, exploration, analysis, and impactful presentation—core competencies for navigating today's data-rich landscape.

 Each chapter is designed to build both theoretical understanding and hands-on expertise. The book's unique dual-approach structure introduces foundational data science concepts, followed by exercises in RStudio using real-world datasets from social fields. This blend of theory and practice ensures readers grasp the 'how' and the 'why' behind data-driven research, making it ideal for students, researchers, and professionals seeking to enhance their analytical capabilities. Spatial data analysis stands out as one of the most unique in this book because it focuses on spatial data, a topic rarely covered in data science references. While there are many resources on data science, few explore the unique aspects of spatial data. Nowadays, most data includes location information, which can greatly enhance data science and decision-making.

The final chapter will discuss critical topics in data ethics and reproducibility, encouraging readers to think responsibly about data use. By the end, readers will gain not only technical skills but also ethical awareness, empowering them to conduct rigorous, reliable, and socially conscious research. No prior experience with data science is required—just an eagerness to explore the power of data in understanding and shaping society. This textbook is suitable for adoption in both undergraduate and graduate classes. The book will help students build a solid theoretical foundation in data science while gaining hands-on experience with RStudio.

Contents

Introduction to Data Science & Process of Data Science.- Data Types & Measurement Scale.- Data Exploration, Preprocessing, & Modeling.- Statistics - Descriptive & Inferential.- Data Visualization & Uncertainty.- Machine Learning, Measuring Uncertainty, and Forecasting.- Working with Spatial Data.- Web Scraping & Data Mining.- Natural Language Processing & Sentiment Analysis.- Ethics & Reproducibility.

最近チェックした商品