AI in Banking : Practical Applications and Case Studies

個数:

AI in Banking : Practical Applications and Case Studies

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 315 p.
  • 言語 ENG
  • 商品コード 9789819638369

Full Description

Big data and artificial intelligence (AI) cannot remain limited to academic theoretical research. It is crucial to utilize them in practical business scenarios, enabling cutting-edge technology to generate tangible value. This book delves into the application of AI from theory to practice, offering detailed insights into AI project design and code implementation across eleven business scenarios in four major sectors: retail banking, e-banking, bank credit, and tech operations. It provides hands-on examples of various technologies, including automatic machine learning, integrated learning, graph computation, recommendation systems, causal inference, generative adversarial networks, supervised learning, unsupervised learning, computer vision, reinforcement learning, fuzzy control, automatic control, speech recognition, semantic understanding, Bayesian networks, edge computing, and more. This book stands as a rare and practical guide to AI projects in the banking industry. By avoiding complex mathematical formulas and theoretical analyses, it uses plain language to illustrate how to apply AI technology in commercial banking business scenarios. With its strong readability and practical approach, this book enables readers to swiftly develop their own AI projects.

Contents

Part I: Smart Marketing.- Chapter 1. Mobile Banking Potential Monthly Active Customer Mining: Automated Machine Learning Techniques.- Chapter 2. Retail Potential High-value Customer Identification: Graph Neural Network Technology.- Chapter 3. Accurate Recommendation for Banking: Recommender System.- Chapter 4. Assessing the Value of Bank Online Marketing Posts: Reinforcement Learning Techniques.- Chapter 5: Modeling Binary Causal Effects of Related Repayments: Causal Inference Techniques.- Part II: Intelligent Risk Control.- Chapter 6. Telecom Fraud Money Laundering Account Recognition Case: Multiple Machine Learning Techniques.- Chapter 7. Developing a Dialectal Speech Phone Collection Bimodal Robot from Scratch: Intelligent Voice Q&A Technology.- Chapter 8. Chattel Collateral Warehouse Visual Monitoring Project: Image Understanding Technology.- Chapter 9. Personal Loan Delinquency Prediction Project: Bayesian Network Techniques.- Part III: Intelligent Operation.- Chapter 10. Enterprise WeChat Private Traffic Customer Cold Start Program: Automated Control Technology.- Chapter 11 Intelligent Inspection Robot for Commercial Bank Data Centers: Computer Vision Technology.

最近チェックした商品