Health Information Processing : 10th China Health Information Processing Conference, CHIP 2024, Fuzhou, China, November 15-17, 2024, Proceedings, Part II (Communications in Computer and Information Science)

個数:

Health Information Processing : 10th China Health Information Processing Conference, CHIP 2024, Fuzhou, China, November 15-17, 2024, Proceedings, Part II (Communications in Computer and Information Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 272 p.
  • 言語 ENG
  • 商品コード 9789819637515

Full Description

This two-volume set CCIS 2432-2433 constitutes the refereed proceedings of the 10th China Health Information Processing Conference, CHIP 2024, held in Fuzhou, China, during November 15-17, 2024.

The 32 full papers included in this set were carefully reviewed and selected from 65 submissions.

They are organized in topical sections as follows: biomedical data processing and model application; mental health and disease prediction; and drug prediction and knowledge map.

Contents

.- Mental health and disease prediction.

.- Data Augmentation and Instruction Fine-Tuning for ADR Detection.

.- Deep Fusion Network with Feature Engineering for Discharge Risk Assessment.

.- Analysis of Risk Factors for Hemorrhagic Complications in Pediatric Acute Liver Failure.

.- PMFNet: Pseudo-modal fusion network for obstructive sleep apnea detection using single-lead ECG signals.

.- VisionLLM-based Multimodal Fusion Network for Glottic Carcinoma Early Detection.

.- RAG Combined with Instruction Tuning for Traditional Chinese Medicine Syndrome Differentiation Thinking.

.- Drug prediction and Knowledge map.

.- MBF-DTI: A fused multi-dimensional biochemical feature-based drug target prediction method based on heterogeneous graph attention networks.

.- Structure and pseudo-ligand based drug discovery for disease targets.

.- Multi-channel hypergraph convolutional network predicts circRNA-drug sensitivity associations.

.- Knowledge Infusion Framework with LLMs for Few-Shot Biomedical Relation Extraction.

.- A review of drug-target interaction prediction methods.

.- The Joint Entity-Relation Extraction Model Based on Span and Interactive Fusion Representation for Chinese Medical Texts with Complex Semantics.

.- Multi-task learning-based knowledge graph question answering for pediatric epilepsy.

.- Hypertension Medication Recommendation Based on Synergy and Selectivity of Heterogeneous Medical Entities.

.- Integrating TCM's "One Root of Medicine and Food" Principle into Dietary Recommendations with Retrieval-Augmented LLMs.

.- OAGLLM: A Retrieval-Augmented Large Language Model for Medication Instructions.

最近チェックした商品