Machine Translation : 20th China Conference, CCMT 2024, Xiamen, China, November 8-10, 2024, Proceedings (Communications in Computer and Information Science)

個数:
電子版価格
¥11,547
  • 電子版あり

Machine Translation : 20th China Conference, CCMT 2024, Xiamen, China, November 8-10, 2024, Proceedings (Communications in Computer and Information Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 168 p.
  • 言語 ENG
  • 商品コード 9789819622917

Full Description

This book constitutes the refereed proceedings of the 20th China Conference on Machine Translation, CCMT 2024, which took place in Xiamen, China, during November 8-10, 2024.

The 13 full papers included in this book were carefully reviewed and selected from 52 submissions. They were organized in topical sections as follows: robustness and efficiency of translation models; low-resource machine translation; quality estimation; large language modes for machine translation; multi-modal translation; and machine translation evaluation.

Contents

.- Robustness and Efficiency of Translation Models.

.- A Data-Efficient Nearest-Neighbor Language Model via Lightweight Nets.

.- Extend Adversarial Policy Against Neural Machine Translation via Unknown Token.

.- Low-resource Machine Translation.

.- Evaluating the Translation Performance of Multilingual Large Language Models: a Case Study on Southeast Asian Language.

.- Quality Estimation.

.- Critical Error Detection based on Anchors Test.

.- Large Language Modes for Machine Translation.

.- Enhancing Machine Translation Across Multiple Domains and Languages with Large Language Models.

.- Incorporating Terminology Knowledge into Large Language Model for Domain-specific Machine Translation.

.- Multi-modal Translation.

.- Joint Multi-modal Modeling for Speech-to-Text Translation as Multilingual Neural Machine Translation.

.- Machine Translation Evaluation.

.- CCMT2024 Tibetan-Chinese Machine Translation Evaluation Technical Report.

.- HW-TSC's Submission to the CCMT 2024 Machine Translation Task.

.- ISTIC's Neural Machine Translation Systems for CCMT' 2024.

.- Lan-Bridge's Submission to CCMT 2024 Translation Evaluation Task.

.- Technical Report of OPPO's Machine Translation Systems for CCMT 2024.

.- Xihong's Submission to CCMT 2024: Human-in-the-Loop Data Augmentation for Low-Resource Tibetan-Chinese NMT.

最近チェックした商品