Genetic Programming Theory and Practice XXI (Genetic and Evolutionary Computation) (2025)

個数:

Genetic Programming Theory and Practice XXI (Genetic and Evolutionary Computation) (2025)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 416 p.
  • 言語 ENG
  • 商品コード 9789819600762

Full Description

This book brings together some of the most impactful researchers in the field of genetic programming (GP), each one working on unique and interesting intersections of theoretical development and practical applications of this evolutionary-based machine learning paradigm. Topics of particular interest for this year's book include powerful modeling techniques through GP-based symbolic regression, novel selection mechanisms that help guide the evolutionary process, modular approaches to GP, and applications in cybersecurity, biomedicine, and program synthesis, as well as papers by practitioner of GP that focus on usability and real-world results. In summary, readers will get a glimpse of the current state-of-the-art in GP research.

Contents

Chapter 1. Representation & Reachability: Assumption Impact in Data Modeling.- Chapter 2. EvoFeat: Genetic Programming-based Feature Engineering Approach to Tabular Data Classification.- Chapter 3.  Deep Learning-Based Operators for Evolutionary Algorithms.- Chapter 4.  Survey of Genetic Programming and Large Language Models.- Chapter 5.  Evolving Many-Model Agents with Vector and Matrix Operations in Tangled Program Graphs.- Chapter 6.  Automatic Design of Autoencoders using NeuroEvolution.- Chapter 7. Code Building Genetic Programming is Faster than PushGP.- Chapter 8. Sharpness-Aware Minimization in Genetic Programming.- Chapter 9. Tree-Based Grammatical Evolution with Non-Encoding Nodes.- Chapter 10.  Genetic Programming with Memory for Approximate Data Reconstruction.- Chapter 11.  Ratcheted Random Search for Self-Programming Boolean Networks.- Chapter 12.  Exploring Non-Bloating Geometric Semantic Genetic Programming.- Chapter 13. Revisiting Gradient-based Local Search in Symbolic Regression.- Chapter 14. It's Time to Revisit the Use of FPGAs for Genetic Programming.- Chapter 15. Interpretable Genetic Programming Models for Real-World

Biomedical Images.- Chapter 16. Crafting Generative Art through Genetic Improvement: Managing Creative Outputs in Diverse Fitness Landscapes.- Chapter 17.  Cell Regulation and the Early Evolution of Autonomous Control.- Chapter 18.  How to Measure Explainability and Interpretability of Machine Learning Results.- Chapter 19.  Lexicase Selection Parameter Analysis: Varying Population Size and Test Case Redundancy with Diagnostic Metrics.- Chapter 20.  Using lineage age to augment search space exploration in lexicase selection.

最近チェックした商品