Large Language Models and Evolutionary Computation : Generative AI for Meta-heuristics (Natural Computing Series)

個数:
  • 予約
  • ポイントキャンペーン

Large Language Models and Evolutionary Computation : Generative AI for Meta-heuristics (Natural Computing Series)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9789819585960

Full Description

This book provides theoretical and practical knowledge of an LLM (Large Language Model)-based approach to metaheuristics. In this book, the basic theory and the latest techniques are explained in an easy-to-understand manner, with concrete examples. Another emphasis is its real-world applicability. The book presents empirical examples from practical data and show that the proposed approaches are successful when addressing tasks from the recent research areas such as (1) LLMs for EC (Evolutionary computation), (2) training LLMs for EC, (3) automated machine learning, and (4) program synthesis, etc., details of which will be provided in the appendix for the sake of readers' study. These materials will include a description of available resources for readers interested in gaining hands-on experience with the subject. The fundamental themes of this book, therefore, include recent research on the promising combination of Generative AI, LLMs, evolutionary computation, and metaheuristics. The ultimate goal of this book is to enable readers to apply these ideas to artificial intelligence on their own. 
This book is intended for beginners interested in artificial intelligence and artificial life (from undergraduate to graduate students), researchers in related fields, and engineers considering their applications. Therefore, most topics in this book begin with accessible subjects that require no specialized knowledge, though some connect to unsolved problems and cutting-edge research themes.

Contents

Chapter 1 Introduction.- Chapter 2 Examples of using LLMs as Metaheuristics.- Chapter 3 LLMs for Evolutionary Optimization.- Chapter 4 LLMs for Metaheuristics.- Chapter 5 Towards Scalable, Robust, and Open-ended LLM-EC Integration.- Chapter 6 Conclusion.- Chapter 7 Appendix A: Basic Tools.- Chapter 8 Appendix B: Case Study - LLM for EC Operators.- Chapter 9 Appendix C: Case Study - LLMs for AutoML.

最近チェックした商品